说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多级排队
1)  multistage queue
多级排队
2)  Multi-level Queuing Network
多级排队网络
3)  multipriority queue
多级优先排队
4)  multiple queues
多路排队
5)  multiqueue
多重排队
6)  multi-level queue
多级队列
1.
Parallel algorithm of region growing based on multi-level queue;
一种基于多级队列的并行区域生长算法
补充资料:等待制的单通道排队


等待制的单通道排队
queue with waiting and one service channel

  等待制的单通道排队Iq.”.初由w颐恤艰田d姗肥币沈d.I.已;Maceo.oTO o6c月y角.侧扭”ac班c碑Mal,单服务台排队(singie一sen尼rql笼ue)‘’立种排队,其服务规则规定(发现系统正繁忙)没有立即被服务的呼唤形成一个排队,而对此呼唤(或成批呼唤)的服务只能开始于前一个呼唤(或成批呼唤,若服务是成批进行的)服务完之后.基本定义与记号见排队(q娜ue). 排队系统的状态有如下非常自然的特征参数:a)直到第n个呼唤开始服务的等待时间w。和定义为时刻t前到达的呼唤服务完毕所需时间的虚等待时间、(t);b)第n个呼唤到达时的队长q。和时刻t的队长q(t). 1)在“单的”情形(v丁三I),值、。之间有递推关系: w。,,=max(0,w。+看。),亡。=:二一:二·(l) 排队系统在“多的”情形,当,了与,J都不是l时,也可用同样类型的方程来描述(对等待时间或队长).例如,对队长q。有关系式 任。+一rnax(0,Q。+,二一刀。),(2)其中月。为在系统连续运行的情况下时间;二内能服务的呼唤数·如果{::}‘E,{,{卜G,,那么口。的分布可以由关系式 〔::一exn卜:礴」‘一,,尸‘·;一“,{给出,其中:为心分布的指数, 如果置X0“O,戈二七:十…+七。,那么(l)式的解有如下形式 w。·、一戈一恤(一w、,X】,’‘,戈)一(3) “~(戈十w,,戈一X,,二,戈一戈一,,0).因此,如果{古。}任G、且对固定区间八,当n~co时,p{戈它△}一卜0,那么等待时间有极限分布: 。叭p{W。>x}一p丈Y>x},其中 Y二s叩玖,玖=石一*十“’十古一、,Y0“0. 上)0这里变量之、为序列{亡。}孔,延拓到全轴上的平稳序列{否。}杀一。的元素.下面假设对所有控制序列都做这种延拓 下面的值、食=s叩(o,心*,七*+心*一,古。+亡*一t+七*一2,”)满足(1)且具有与w。的极限分布完全一样的分布.这就是平稳等待时间过程. 令{古。}‘G,为遍历的(以概率1,戈/。一E否,).如果E否*<0或E亡*“o且省*=叮*、,一刀*,其中{叮*;‘G:,那么 p{Y<的}二p{w介<田}=1.否则,p{Y=的}=p{w瓦二的}二l·如果{睿。}‘G才,那么 P{Yx}二p{Y>x}存在、其中 Y=suPY(t),Y(t)“X(0)一X(一t). “多0 此外,如果 E(X(l)一X(0))=E(Y(1)一Y(0))=a<0,那么过程 w,(“)={w(t一u)二u)o}的分布当t一,田时收敛到严平稳虚等待时间过程 w,(u)=suP(X(u)一X(v)) p‘u的分布.这里的收敛性在强形式下成立,即对任意可测集B,有 p{w,任B}~p{w‘〔B}· 进一步,如果{X(t)}“G,:且ak}一p{w。>T;+”‘+T;}· 如果{T夕}任G,,{;了}eG,且T歹有非格点分布,那么 ,叭p{叹(‘)>k+l}- =p{w。>T万+一+T之+,},k)o, 顿p{。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条