1) condensed state chemistry
凝聚态化学
2) chemocoagulation,chemical coagulation
化学凝聚<法>
3) condensed state physics
凝聚态物理学
4) condensed matter physics
凝聚态物理学
1.
In this paper we start from the stratification of physical world to discuss the situation of condensed matter physics within the context of physics today, and we show why this branch of physics is still full of vitality due to the dialectical relationship between complexity and simplicity.
本文首先根据物质世界的层次化来说明凝聚态物理学在当今物理学中所处的地位 ,并阐述了复杂与简单的辨证关系 ,来说明为何这一学科至今仍然富有生命力 ;进而对这一学科的范围进行了讨论 ,强调了位形空间和动量空间中都存在多种类型的凝聚现象 ,而相应的凝聚体构成了这一学科的研究对象 ;还探讨了处理凝聚态理论问题的量子物理与经典物理方法有效领域的界限与分野 ;最终对此学科的发展历史进行回顾 ,并追溯和剖折了其概念体系的演变 ,从而揭示了分别对应于固体物理学和凝聚态物理学的两种范式 ,用以帮助学习、理解和研究当今的凝聚态物理学。
2.
Discusses various contemporary aspects of the role played by condensed matter physics on the frontiers of materials research.
讨论了凝聚态物理学在当代材料研究的前沿问题中所起的作用。
5) condensed mass geoscience
凝聚态地质学
6) condensed matter nuclear science
凝聚态核科学
1.
Tritium production and the nuclear transmutation induced by deuterium flux inside Pd are described in order to illustrate the condensed matter nuclear science.
以氚产生、氘通量在钯中引发的核嬗变和热流为例介绍凝聚态核科学(冷聚变)研究动态。
2.
The repeatability of experiments in condensed matter nuclear science is essential in developing this research.
凝聚态核科学实验的可重复性是亟待解决的问题,本论文通过重复一系列气态充氘实验,研究过热现象及其与其它现象的关联。
补充资料:凝聚态化学
凝聚态化学 condensed statechemistry 研究化学体系在凝聚态中的物理化学行径及其反应的化学分支。凝聚态也称凝聚相,包括固态(相)、液态(相)、液晶中间态和介于液气之间转折的临界态。凝聚态化学为固体化学、材料科学、生物化学、地球化学提供重要信息。 固体物质在高压下,由于增强了邻接原子间轨道的重叠,而使轨道能级、电子状态以及各种光、电、磁等性质产生变异。例如,多种元素和几十种化合物在加压下能由绝缘体转化为导体。有机超导体在6×105~18×105千帕压力下呈现超导性;螺吡喃和联蒽酮化合物在加压下有光致变色和热致变色的转变;以乙二胺为配体的配位化合物因加压产生电子转移,从而具有新的化学活性;压力对稀土化合物的激光效率也能施加影响,上述效应的发现推动了配位场理论、配位化学的发展。 从液氢到熔融的硅酸盐,都属于液态。对液态物质结构的研究的难度很高。所用的实验技术有X射线衍射、中子衍射、核磁共振、激光拉曼光谱、弛豫方法等。非线性激光光谱可在皮秒级时标水平上,提供溶质在溶剂中运动情况的信息,可用于研究液体中碘原子结合成碘分子,1,2-二苯乙烯构象转化,氮、苯等溶剂与溶质分子间的能量传递,利用现代计算技术,已实现了热力学数据的预测;建立了电极表面离子溶液结构模型和蛋白质水溶液分子动态学的理论模拟研究。引入时间相关函数,对液态的动态理论研究有重要作用,可据以进行分子在溶液中的输运速度、能量弛豫和化学反应速率的计算。 地球化学现象往往涉及复杂的多相凝聚体系。现代高温、高压技术的发展已有可能进行接近地球核心的模拟研究,探索元素(如碳)的地球化学循环,对化石有机分子稳定性、构象和分解反应的研究,可更多地了解煤、石油等有机沉积物的起源和组分,对如何利用已有的矿藏和勘探新的化石燃料也有重要意义。研究陨石可提供有关太阳系和银河的起源、演化与组成的信息,许多元素的同位素产生异常现象,显示了陨石母体的形成演化和毁灭等阶段的变化,在某些陨石中发现有机化合物,则提供了存在生命前身化合物、星际分子和彗星物质的线索。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条