1) atomic disintegration
原子蜕变
2) atomic disintegration
原子蜕变<能>
3) atomic disintegration
原子分裂,原子蜕变
4) proton decay
质子蜕变
5) disintegration proto
蜕变质子
6) electrodisintegration
电子核蜕变
补充资料:粉末冶金原子能材料
粉末冶金原子能材料
powder metallurgy atomic reactor material
fenmo ye}一n yuonzrneng ea}l一00粉末冶金原子能材料(powder metallurgyatomie reaetor material)指用于核反应堆的粉末冶金材料。主要有:核燃料、中子控制材料和屏蔽材料、中子减速材料和反射材料、包套材料和轴承等。 (l)核燃料。金属社由于其熔点高,通常是用粉末冶金法生产的。金属铀虽然可以用熔铸法生产,但用粉末冶金法节约金属、减少工序、元件尺寸精确、晶粒均匀,且可制得一定孔隙度的产品,有利于裂变产生气体的贮存,因此也常用粉末冶金法生产。从充分利用能量和提高热电转换率出发,反应堆向高温型发展,同时因燃耗时铀不稳定,所以陶瓷燃料元件得到广泛的应用。陶瓷元件具有熔点高、高温强度高、物理化学性能稳定、导热性和抗腐蚀性优良、与多种金属包套高温共容等优点。最常用的是U02、UC、Tho:等。为避免因辐照损伤而缩短元件的使用寿命,常制成“画框”式弥散型燃料元件。“画框”芯是陶瓷燃料弥散体,“画框”周围和两面的盖板为纯铝或不锈钢等材料。“画框”元件已用于极高温度气冷反应堆、热离子转换反应堆、核子火箭自备电源和动力装置等。 (2)中子控制材料和屏蔽材料。最常见的有金属错、硼不锈钢、银一锢一锡、碳化硼、稀土氧化物金属陶瓷等。其中后两种材料总是用粉末冶金法生产的。碳化硼中子俘获截面高,控制能谱范围宽,辐照损伤小,密度低,抗腐蚀,所以是广泛应用的控制材料和屏蔽材料。碳化硼除单独使用外,还可以制成复合材料或金属陶瓷,如B、C一AI:03、B;C一BN、B4C一AI、B4C一Cu、B;C一Ni等。EuZO3一不锈钢或钦,氧化礼、氧化衫或钦酸铺的不锈钢弥散体,都是重要的控制材料。银一锢一福,虽然传统上是用熔铸一加工法生产的,但用粉末冶金法(热压和挤压)可以提高强度。 (3)中子减速材料和反射材料。在所有金属中,被的中子吸收截面最小,同时弹性模量高、密度低、抗腐蚀性好,所以被和氧化被是重要的减速和反射材料。通常用冷压一烧结、松装烧结和热压工艺制得。主要缺点是被的粉尘有毒、加工困难、价格较贵。除被和BeO外,ZrH:在许多反应堆中也得到了应用。 (4)包套材料和轴承材料。常用的包套材料有铝、镁、被和错等。铝密度小,易于加工,但使用温度受到限制,因此SAP(烧结铝粉)(见粉末冶金弥散强化材料)变成了重要的包套材料之一。SAP在CO:中的使用温度达600℃,超过不锈钢和Zr一2合金(使用温度分别为500’C和450℃)。被一般也用粉末冶金法制造。错也可用粉末冶金法制得。B4C、A12O。、WC、TaC等化合物,以及以上述化合物为基的金属陶瓷是控制棒传动系统和主旋转泵一次回路中常用的轴承材料。 (王零森)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条