1) contra-arithmetic series
反算术级数
2) arithmetic progression
算术级数
1.
They also remarked that Heath-Brown gave explicitly infinitely many 4-term arithmetic progressions,where each term can be written as sums of two squares.
Heath-Brown具体构造出无穷多组4项算术级数,其中每项均能表示为两个正整数的平方和。
2.
It has been proved that the primes contain arbitrarily long arithmetic progressions.
已有结论表明:素数集中存在任意长的算术级数。
3.
In this article, we prove that the ternary Goladbach problem in arithmetic progression can be solved for almost all large positive moduli, where the moduli can be as large as AT1/6-ε.
本文考察了几乎所有模的算术级数中的奇数Goldbach问题。
3) Arithmetic progressions
算术级数
1.
Every large odd integer can be represeted as the sum of three primes which take from arithmetic progressions.
解决了三素数定理推广到素数取自算术级数的问题。
4) arithmetical progression
算术级数
1.
Solution of a congruence equation in arithmetical progression;
一种同余方程在算术级数中的解
2.
On the divisibility of Lehmer D H number in arithmetical progression;
关于算术级数中Lehmer DH数的整除性
3.
In this paper, the distribution behaviour of primitive root solutions modulo of congruence equation a≡1(modn) in arithmetical progression is studied.
本文主要研究同余方程aa≡1(modn)在算术级数A={aom+bo}中模P的原根解的分布性质。
5) arithmetical series
算术级数,等差级数
6) arithmetic progression
算术级数;等差级数
补充资料:算术级数
又称“等差级数”。形如a+(a+d)+…+(a+nd)+…的级数。其中d称为公差。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条