1) dually isomorphic lattices
对偶同构格
2) dual isomorphism
对偶同构
1.
In this paper , we discussed some properties of lattice\|semigroups or semigroups on lattice and gave a sufficient and necessary condition for a semigroup on lattice as a lattice\|group by using the tool of a dual isomorphism.
利用格上半群的对偶同构这一工具,研究格上半群的一些性质,并给出格上半群构成格群的一个充分且必要条件。
2.
In this paper, the author studied the properties of lattice - order semigroups and gave a sufficient and necessary conditin for a lattice - semigroup as a lattice - order group by using the tool of a dual isomorphism.
主要利用格序羊群的对偶同构这一工具,研究格序半群的一些性质,并给出格半群构成格序群的一个充分必要条件。
3) dual lattice-homomorphism
对偶格同态
4) quasi i dual autoisomphism
拟i对偶自同构
5) quasi dual autoisomphism
拟对偶自同构
1.
In this paper, we define quasi i dual autoisomphism and quasi dual autoisomphism of k ary de Bruijn Good graph G n , And use isomorphic property.
本文定义了k元deBruijn-Good图Gn的拟i对偶同构及拟对偶自同构,并利用同构的性质,给出了一类k元非奇反馈函数的自同构函数的表达式。
补充资料:对偶
修辞方式,用对称的字句加强语言的效果。如:下笔千言,离题万里。沉舟侧畔千帆过,病树前头万木春。参看〖律诗〗、〖骈文〗。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条