说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 闭正规子群
1)  closed normal subgroup
闭正规子群
1.
Secondly, let H be a closed normal subgroup ofG ,we discuss the relationship between B ( H ), B ( G / H )and B ( G ),but we can’t obtain the result that B (G / H ) ??j→B (G ) ?h?→B ( H)is also a short exact sequence.
然后论述了G与其闭正规子群H ,商群G /H对应的Fourier-Stieltjes代数B ( G )、B ( H )、B ( G / H )之间的联系,短正合列H→G→G /H对应的Fourier-Stieltjes代数B (G / H ) ??j→B (G ) ?h?→B ( H)不一定是短正合列。
2)  closed connected normal subgroups
连通正规闭子群
1.
Some algebraic groups are discussed by looking into the lattice of their closed connected normal subgroups.
通过对代数群的连通正规闭子群格的讨论研究代数群。
2.
There are particular relations between the closed connected normal subgroups of algebraic groups and the ideals of Lie Algebras.
代数群的连通正规闭子群与李代数的理想之间有很特殊的关系。
3)  formatien closed for normal subgroups
正规子群闭的群系
4)  normal subgroup
正规子群
1.
Character of group which only have n nontrivial normal subgroups
仅含n个非平凡正规子群的群的特征
2.
By using algebra of fixed point class to determine the component factors and properties of normal subgroup H of the fundamental group of the covering space, the paper studies the relation of fixed point class with fixed point class H.
本文利用不动点类的代数化 ,决定复迭空间的基本群的正规子群H的构成因素及其性质 ,研究不动点类与H不动点类的关系。
3.
Based on the Rough theory, a rough subgroup with respect to a normal subgroup of a group is discussed, and some properties of the lower and the upper approximations in a group are studied.
基于粗糙集理论 ,对一个群的子集关于正规子群的粗糙近似子群作了探讨 ,并研究了一个群的上、下近似的性
5)  normal subgroups
正规子群
1.
Su Xiang Ying and Wang Pin Chao obtained some sufficient conditions of supersoluble groups by studying semi normal subgroups of finite groups[1,2,7].
文献 [1 ]引入的半正规子群 ,对有限群结构有重要的影响 [1 ,2 ,7] 。
2.
Considering the subnormal subgroups,some equivalent conditions for nilpotency of finite groups are given and a sufficient condition for nilpotency of finite groups is obtained.
研究次正规子群对有限群结构的影响,得到幂零群的若干等价条件和一个充分条件。
6)  non-normal subgroups
非正规子群
1.
The number of the orders of non-normal subgroups and the structure of finite groups;
非正规子群阶的个数与有限群的结构
2.
Groups of order p~aq~br~c having exactly three conjugacy classes of non-normal subgroups
非正规子群的共轭类类数为3的p~aq~br~c阶群
补充资料:正规子群


正规子群
normal srihgroqi

  正规子群f.川口日,鲍”,;”o州a刀研‘‘举月“犯月‘],正规除子(加m司divisor),不变子群(访珑币田吐sub-罗〕uP)群G的子群H,使得G模H的左分解与右分解相同.换言之,对于任意元素a6G,陪集aH和Ha(作为集合)相等.这时亦称H在G中正规,记作H且G:如果还有H笋G,则记作H阅G.子群H在G中正规当且仅当它包含其任意元素的所有G共辘(见共辘元(conju即把日翻笠nis)),即H“住H.正规子群还可以定义为与其所有的共扼都相等的子群,因而也被称为自共扼子群(货扩·。功火势忱subgro叩). 对于任意同态(hOIno加甲恤m)州G~G’,G中被映成G’的单位元的全体元素组成的集合K(即同态毋的核(kenle!of血加伽曲印比m))是G的一个正规子群.反之,G的任一正规子群都是某个同态的核.特别地,K是映到商群(q叩血ntgro叩)G/K的自然同态的核. 对于任意正规子群的集合,它们的交仍是正规的,由G的任意一族正规子群生成的子群仍在G中正规.0.A.物a,叱a撰【补注】群G的子群H是正规的,如果对所有的g‘G有g一’Hg=H,或者等价地,其正规化子N。(H)=G,见子集的正规化子(non工以止况r of a suh记t).正规子群亦称为不变子群(运论由以su地”叩),因为它在G的内自同构〔~auto伽rp比m)x巨尸=g一,xg(g‘G)下是不变的.在全体自同构下不变的子群称为全不变子群(蒯y一访招山ntsu地加uP),或者特征子群(d朋沈施加su琢ouP).在全体自同态下不变的子群称为全特征子群(刘y‘玩‘‘泊由tic su地阳叩).【译注】有的书将全体自同态下不变的子群称为〔完)全不变子群,而在全体自同构下不变的子群称为特征子群,如见[AI],[BI].
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条