1) commutative normal subgroup
交换正规子群
2) invariant Abelian subgroup
正规交换子群
3) normal subgroup
正规子群
1.
Character of group which only have n nontrivial normal subgroups
仅含n个非平凡正规子群的群的特征
2.
By using algebra of fixed point class to determine the component factors and properties of normal subgroup H of the fundamental group of the covering space, the paper studies the relation of fixed point class with fixed point class H.
本文利用不动点类的代数化 ,决定复迭空间的基本群的正规子群H的构成因素及其性质 ,研究不动点类与H不动点类的关系。
3.
Based on the Rough theory, a rough subgroup with respect to a normal subgroup of a group is discussed, and some properties of the lower and the upper approximations in a group are studied.
基于粗糙集理论 ,对一个群的子集关于正规子群的粗糙近似子群作了探讨 ,并研究了一个群的上、下近似的性
4) normal subgroups
正规子群
1.
Su Xiang Ying and Wang Pin Chao obtained some sufficient conditions of supersoluble groups by studying semi normal subgroups of finite groups[1,2,7].
文献 [1 ]引入的半正规子群 ,对有限群结构有重要的影响 [1 ,2 ,7] 。
2.
Considering the subnormal subgroups,some equivalent conditions for nilpotency of finite groups are given and a sufficient condition for nilpotency of finite groups is obtained.
研究次正规子群对有限群结构的影响,得到幂零群的若干等价条件和一个充分条件。
5) abelian subgroup
交换子群
1.
Let G be a finite group, M(G) the set of maximal Abelian subgroup of G, i.
设G为有限群,G的极大交换子群的阶的集合记为M(G),即M(G)={|N||N交换,N<G,且对M≤G,M交换,若N≤M,则G=M或N=M}。
2.
Maximal subgroup, minimal subgroup and abelian subgroup are three classes of very important subgroups, which played an important part in the study of the structure of finite groups.
极大子群、极小子群和交换子群等是有限群中三类非常重要的子群,它们在有限群结构的研究中起着非常关键的作用。
3.
By restricted on the centralizer of abelian subgroup,there is a definition of B-group:Call a fintie group G B-if either CG(A)=G or CG(A)=AG for any abelian subgroup A of G.
交换子群是群中相当重要的一类子群,它对群的结构有很大影响。
6) thogonal transformation group
正交变换群
补充资料:正规
符合正式规定或公认标准的:正规战|正规程序。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条