一、引言
数学语言是数学思维的载体,数学学习实质上是数学思维活动,交流是思维活动中重要的环节,因此《课标》指出“动手实践、自主探索与合作交流是学生学习数学的重要形式”,联合国教科文组织将有效的数学交流作为学习数学的目标之一,实现有效交流的前提是学习和掌握数学语言。
二、数学语言的特点
数学语言可分为抽象性数学语言和直观性数学语言,包括数学概念、术语、符号、式子、图形等。数学语言又可归结为文字语言、符号语言、图形语言三类。各种形态的数学语言各有其优越性,如概念定义严密,揭示本质属性;术语引入科学、自然,体系完整规范;符号指意简明,书写方便,且集中表达数学内容;式子将关系溶于形式之中,有助运算,便于思考;图形表现直观,有助记忆,有助思维,有益于问题解决。
数学语言作为数学理论的基本构成成分,具有“高度抽象性、严密的逻辑性、应用的广泛性”。简单地讲,数学语言科学、简洁、通用。
三、数学语言教学策略
1.重视数学语言之间的互译训练,渗透对立统一的辩证思想
“互译”一方面指将普通语言转化为数学语言(即数学化),比如由具体的对应关系逐步抽象形成映射、函数的概念,及对抽象的数学语言理解内化借助普通语言或具体实例表达交流,比如根据映射和函数的定义构造映射和函数实例;另一方面还包括不同形态的数学语言之间的转换,比如集合的自然语言表示、符号语言表示及韦恩图表示。“互译”有助于激发学生学习兴趣,加深对数学本质的理解,增强辨析能力,互译的过程体现对立统一的思想,有助于不同思路的转换与问题化归。比如函数y=f(x)在[a,b]上
3.重视命题条件关系教学,强化条件意识,寓抽象性于具体实例之中
条件关系实质是抽象的逻辑证据支撑关系的具体表现,强化条件关系教学,有助于培养缜密的逻辑推理能力。比如教学中应强调两直线li:aix+biy+ci=0(i=1,2)平行的充要条件是a1b2=a2b1,并非两直线的斜率相等。
4.注重思想方法教学,寓数学思维教学于数学语言教学之中
数学语言教学不能是孤立的,我们应当在数学语言教学过程中有意识归纳技巧和方法,提炼策略和升华思想,将思想方法教学溶于数学语言教学之中,通过教学实例展现:零星的观点汇聚形成有用的思路和特殊的技巧,有效的思路演变为系统的方法和策略,科学的方法拓变升华为科学思想。比如由某些特殊方程的特殊解法可感悟到:试验求值→变形整理→加减、代入技巧→消元法→化未知为已知的思想。