说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 殆切触结构
1)  almost contact structure
殆切触结构
2)  almost contact manifold
殆切触流形
3)  almost complex structures
殆复结构
4)  Almost paracontact manifold
殆仿切触流形
5)  Contact riemannian structure
切触黎曼结构
6)  almost contact 3-structure
几乎切触3-结构
补充资料:殆复结构


殆复结构
almost - complex structure

殆复结构【川m侣t一~Plex sou侧比祀;一~~-。.旧crP卿ry种} 流形M上切空间的线性变换张量场I,它满足条件 I‘二一id,即切空Ib1不M(p〔M)的复结构(complex structuoe)的场.一个殆复结构I确定了切丛的复化T‘初的一个直和分解T〔M二F、十犷,这里F、和v分别是由仿射量(a ffinor)I(线性扩张到T〔一M上)对应于特征值i和一i的特征向量所组成的两个互为复共扼的子丛.反之,TcM表示成互为共扼的向量子丛S和了的直和的一个分解定义了M上的一个殆复结构,使得f十二5. 若殆复结构I是由M上_的一个复结构诱导的,即流形M上存在容许的坐标图册,使得场I具有常值坐标刀,则称I是可积的(i ntegrable).殆复结构可积的充要条件为子丛F、是对合的,即它的截面的空间关于(复)向量场的换位运算是封闭的.子丛叭为对合的条件等价于关于I的向量值2形式N(I,I)为零,这里N(I,I)由下式给出: N(了,I只尤均二 二IIX, IY卜I{戈I丫1一I!I,XYI一IX,Y}.其中X和Y是向量场.这个形式称为殆复结构的挠率张量(tors旧n tens()r)或Nijenhuis张量(Nijenhuistensor).挠率张量N(I,I)可看作M的微分形式代数上的一阶微分,即可表为 N(I,I)=!I,!I,d 11+d,其中d是外微分,I看成零阶微分. 从G结构理论的观点来看,一个殆复结构是一个GL如,〔)结构,其中m=(l/2)dimM:而挠率张量N(I,I)是由这结构的第一结构函数定义的张量.因为GL(m、C)结构是椭圆型的,所以殆复结构的无穷小自同构的Lie代数满足二阶椭圆型微分方程组(【11).特别地,紧流形上殆复结构的无穷小自同构的Lie代数是有限维的,并且具有殆复结构的紧流形上所有自同构的群G是一个Lie群.对于非紧的流形,这些论述一般不正确. 若自同构群G可迁地作用在流形M上,则殆复结构I被它在一定点p‘M的值吞唯一确定.这表明I是切空间界M上关于迷向表示(见齐性空间的不变对象(invariant object))的一个不变复结构.Lie群论的方法使我们能构造一大类具有不变殆复结构(可积的与不可积的)的齐性空间,并且在不同假设下对不变殆复结构进行分类([2]).例如,设G是任一Lie群,H是由G的偶数阶自同构的不动点组成的子群,那么商空间G/H就有一个不变殆复结构一个例子是看作齐性空间GZ/SU(3)的6维球面56;在56上任何不变殆复结构都是不可积的. 流形上殆复结构的存在使流形的拓扑受到某些限制—它必须是偶维数的,可定向的,并且在紧情况下它的一切奇维数的Stiefel一Whitucy类必为零.在球面中仅有2维和6堆球面容许殆复结构.【补注】殆复结构的可积性定理,即一个殆复结构为复结构的充要条件是它的Nijenhuis张量恒为零,这属于ANewlander和L.Nirenberg([AI】).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条