1) dimension of analytic set
解析集合维数
2) dimension of an analytic set
解析集的维数
3) semianalytic set
半解析集合
4) analytic subset
解析子集合
5) D numerical analysis
三维数值解析
1.
The application and prospects of 3-D numerical analysis in metal rolling were introduced.
介绍了以有限元为代表的三维数值解析技术在轧制过程解析中的应用情况与展望。
6) Multidimensional analytic functions
高维解析函数
补充资料:解析集
解析集
analytic set
叫类中,定义})、。。和4)是等价山 5)写方向的推广见!4J;从拓扑空间的闭集通过广义‘巡灼得列六解析集(见·运算(·‘一。详ration);!丁f数权的B。{re空I’ed(B:,lrc spa氏)用权人的Balre空间代铸)、它是解拼集在与意义卜的推广6)在解析滩敌沦,牛,、解析集川局部地定义为有限个全纯的数的公共半点的集合如果夕为复。维空间(明的!卜了集f中的解析集,这意味着对任点a任U,存在邻域IU及有限个在‘山全纯的函数了,.止,使Sf一}「二_:。「‘以:)一户:、二川.若可选定的数.厂(在某邻域户护)使Ja①bi知阵介几,在点“的秩为。则称。为解析集N的};一则点(regu飞盯囚mt),数。。称,zN在点‘,的(复}维数(d、me、:s,。n).记作d、m〔5.解析集凡的晰有注则点的集合S*{走S的汗的处处稠密娇集(5价为C映纤集在诱兮书、宁卜下)‘已的补集万凡*(凡的勺点伙飞在之_‘中是解析集,在S中无处稠密 {({宝,_义 dllT,万二hm dlm嘴,‘,〔5; 厂于万解析集5的维数足数 山m‘黔P山叭£解析集s称为纯成维的(P ure妙k一dimensionaJ),如果对所有“Cs.(1il卜N二人.对任意O簇k是dims,集合5、一扭任S:(jj。。、二划是‘一日冬中纯k维解析集· 少是U中任意解析集可表小为纯解析集的有限并,S二口S、.在奇点上山二。林、,*、、dlm万、于一是石中沌人维解析集的奇点解析集的维数小于人S*的连通分支是复流形因对解析集片召*也成分_故得到解析集的复流形分解 s二£“日(S一、s’犷匕卜分解 s二义日(s成)二、日更为方‘便(被加数的维数严格缩减d“di叮,万),它称为S的层化(stratifi以tlon);此和的第人个被加数的连通分支称为解析集S的人维层硬、trat引 解析集S称为可约的(:以iuable)(在创‘{)女rl果它是U中除本身外的两个解析集的并;否则称为不可约的(xrredu幼ble)(在乙卞,八C中所有万\‘J]兰勺解析集是连通且纯的.〔中解析集S是不可约的与一!汉当它的正则点集凡*是连通的.N*的梅个连通分之的闭包在U中是不可约解析集这样的解析集称,凡的不口j约分芝flrredu口blc。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条