1) normal asymptotic distribution
正态渐近分布
4) uniformly asymptotic normality
一致渐近正态分布
1.
Based on Kullback-Leibler distance, this paper gives conditions under which a matrix-Γ distribution is uniformly asymptotic normality.
相对于两个密度函数之间的Kullback-Leibler距离,本文获得了矩阵Γ分布一致渐近正态分布的条件,由于矩阵Γ分布包含了Wishart分布,因此我们也指出了 Wishart分布一致渐近正态分布的条件。
2.
The definition of uniformly asymptotic normal distribution of unirariate distribution is given,and uniformly asymptotic normality of x~2-distribution,uniformly t-distribution and uniformly F-distribution is demenstrated,because the result is better than asymptotic normality,is seems to reditable to use relevant normal distribution for calculating the probability of these three distribution.
首先给出一元分布一致渐近正态分布的定义,接着分别证明了x2分布、一元t分布和一元F分布的一致渐近正态性,由于所得结果比渐近正态性更强,故直接用相应的正态分布去计算这三个分布的概率值更可信。
5) asymptotically normally distributed
渐近正规分布的
6) asymptotic normality
渐近正态
1.
Random weighted approximation to statistics admitting asymptotic normality;
一类具有渐近正态的统计量的随机加权逼近
2.
Under some weak conditions, the strong consistency and asymptotic normality of the SINR are obtained.
在很弱的条件下,当用户的个数和扩频因子都趋近无穷大,而它们的比保持不变时,信干比的强相合性,渐近正态等结果被证明。
3.
It is proved that the statistics is asymptotic normality,and simulation of the statistics′s asymptotic distribution is carried out with Monte Carlo method.
证明了此统计量是渐近正态的,并利用蒙特卡罗方法对统计量的渐进分布做了统计模拟。
补充资料:近正
1.接近正确;接近标准。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条