1) semiregular summation
半正则和
2) regular semigroup
正则半群
1.
Certain subsemigroups of regular semigroups with an inverse transversal;
具有逆断面的正则半群的一些子半群
2.
Construction of regular semigroups with orthodox transversals;
具有纯正断面的正则半群的构造
3.
The natrual partial order on a regular semigroup with a Q-regular~*-transversal;
具有Q-正则~*-断面的正则半群的自然偏序
3) semiregular graphs
半正则图
4) regular *-semigroup
正则*-半群
1.
In this paper,a construction of all subdirect products of regular *-semigroups is obtained.
给出正则*-半群的子直积的构造。
2.
In this paper,the partial order on a regular *-semigroup is described and the sufficient and the necessary conditions for the natural partial order to be compatiable are given.
刻画正则*-半群上的偏序关系,给出自然偏序是相容的等价条件,最后讨论了正则*-半群的酉子集。
5) regular semisimple
正则半单
1.
The simple modules for W(m;n) with generalized p-character χ were described by reduction when χ was regular semisimple.
描述了当χ正则半单时W(m;n)的不可约广义χ-约化表示。
6) semiregular ring
半正则环
补充资料:正则半群
正则半群
regular semi-group
正则半群〔代咨面r,,幼一卯洲甲;pe刁月.钾“朋月yl,p担”a] 每个元素都是正则元(瑰山r elen犯nt)的半群. 任意正则半群S包含幂等元(lde州因tent),S的结构在某种程度上由S的幂等元集E(S)(见幂等元半群(记蜘mpotents,sen”一grouP of))的“结构”和E(S)在S中的“分布”所决定.仅有一个幂等元的正则半群恰为群.首先,E(S)能够用一种自然的方法被视为偏序集.刻画正则半群S的若干结构定理都带有在其幂等元集E(S)上的自然限制.〔关于带零半群的)这些限制之一是所有非零幂等元是本原的(见完全单半群(comPktely一sullPle sen卫一助〕印));具有此性质的半群称为本原的(primitiVe).半群s上的下述条件是等价的:a)s是本原正则半群;b)S是正则半群,且S是其O极小(右)理想(见极小理想(刘汕伯lid溉1))的并;c)S是完全O单半群的O直并(口一山代刃t unlon).当E(s)关于负整数序型成链时,正则半群的结构也是已知的(「ZJ). 若按如下方法定义E(S)上的一个部分运算。,则可获得E(S)的一个更大的信息来源.如果。,fcE(S)使得积ef,f。中至少有一个等于己或.厂,那么ef任E(S);此时规定。。f=。f.由此得到的部分代数可以借助两个拟序关系叮和口公理化.这两个关系与给定的部分运算密切相关(这两个关系在£(S)中的实现如下:e。‘f意指fe=e,e田,f意指ef=。;那么。护门以是E(S)上的自然偏序).这一部分代数称为乎序年(bi一orde代过set)(见fs])·任意正则半群可由一双序集和若干群用一特定的方法构作起来.因此借助双序集对正则半群进行分类成为可能.利用这种方法研究的一类半群是组合正则半群(comb恤ltorial化州ars叨一gro印),即只含平凡子群的正则半群(见〔71). 正则半群的同态象是正则的.正则半群的每个形成子半群的正规复形(加助以】comp」ex)包含幂等元.正则半群上的任意同余(见合同(congruenCe(in alge腼))(代数学中的))被其包含幂等元的类所唯一确定.正则半群S上的同余分离幂等元,当且仅当它包含在关系男中(见Gn沈”等价关系(G众兄n叫山Vakncere】a-石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条