1) well-founded set
良基集
1.
Non-well-founded set theory is to study circular or hyper sets.
非良基集合论是研究循环的或超常集合的理论。
2) non-well-founded set
非良基集
1.
In recent 30 years,great development in non-well-founded set theory has taken place.
非良基集合论是研究循环的或超常集合的理论。
3) well set
良集
1.
Defines the concept of well sets in MS(axiomatic medium set theory) and discusses its characters.
在中介公理集合论系统(MS)中重新定义了良集的概念,讨论了它的性质。
4) Non-well-founded Set and Its Functions
非良基集及其作用
5) well-founded relation
良基
1.
Some conclusions about well-founded relations are given taking of the concepts about well-structured graphs.
结合集合论中的良基定理,建立了良好构成的图的概念,利用图的知识来得到良基定理的等价定理,是图论在集合中的一个应用。
6) well-determined set
良好子集
补充资料:良集
良集
fine set
良集【丘姆就;pa3pe狱eo.oe Muo戮eeT.o]【补注】通常称为薄集(thinset).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条