1) quantized wave function
量化波函数
2) third-quantized wave function of the universe
三次量子化宇宙波函数
1.
On the basis of the generalized invariant theory, the invariant-related unitary transfoumation method is developed and used to study the evolution of the third-quantized wave function of the universe.
首先在推广了的量子不变量理论的基础上建立了与不变量有关的立正变换方法,并用此方法研究了三次量子化宇宙波函数的演化,求得了系统的相因子、波函数。
3) vector wave functions
矢量波函数
1.
Based on formula of vector wave functions in spherical and cylindrical coordinates and their transformation relations,a new method to solve beam coefficients of a two dimensions (2-D) on-axis Gaussian beam is provided.
基于矢量波函数在球和柱坐标系中表达式之间的转换关系,提出了一种求解球坐标系中二维高斯波束波形因子的方法,得到了二维高斯波束波形因子在球坐标系中的解析公式。
2.
n this paper, it is shown that the orthocomplete expansion of δ-function in the set of vector wave functions can be derived by using the orthocomplete expansion of δ-function in the set of scalar wave functions.
利用δ-函数按标量波函数系的正交完备展开式直接推导出δ-函数按矢量波函数系的正交完备展开式。
4) isospin wave function
旋量波函数
5) quantum wave function
量子波函数
1.
The quantum wave function of mesoscopic RLC circuit with power source is obtained by the method of representational transformation, and with the wave function, the quantum fluctuation of the mesoscopic circuit was obtained.
用表象变换的方法求得了介观RLC电路的量子波函数,并由此求得了电荷和电流的量子涨落,同时又用双波函数方法研究了有源介观电路的量子效应。
2.
A new method to solve N dimensional ground state quantum wave functions is developed based on quadratures along a single trajectory.
介绍了一个沿着一条确定的轨迹积分求解N维基态量子波函数的新方法 。
6) Vector wave function
矢量波函数
1.
The new method of the M and N vector wave functions being used to the eigenfunction expansion of the electromagnetic wavefield dyadic Green s function in chiral media is given, and then this method is used to derive the dyadic Green s function of the non-divergence vector potential for the circular chirowaveguide.
首先给出了M和N类矢量波函数用于旋波媒质中电磁波场并矢格林函数的本征函数展开的新方法 ,然后再将这种方法用于导出手征圆波导中无散矢势并矢格林函
补充资料:三次函数
Image:11733235579839404.jpg
形如y=ax^3+bx^2+cx^1+d的函数叫做三次函数.
函数图象是一条曲线,并且是中心对称图形
目前国际上尚未有对三次函数或高次函数的系统研究
说明:补充资料仅用于学习参考,请勿用于其它任何用途。