1) conjugate vector spaces
共轭向量空间
2) self-conjugate vector space
自共轭向量空间
3) conjugate vector space
共轭矢量空间
4) dual space
共轭空间
1.
The correct weak form of basic equations in elasticity is presented by means of dual space conception and basic theorem in functional analysis.
因此从泛函分析的角度出发,基于共轭空间的概念和泛函分析的基本定理准确地给出了弹性力学基本方程的弱形式;给出了连续介质在位移或物理常数间断面上的条件。
2.
In this paper,we give a new proof of the property in dual spaces.
提供共轭空间一性质较代数化的证明 ,该性质常用于算子代数的同调与上同调理论中 。
3.
Taking the spaces of conergent sequences c and the space of null sequences c0 for example,discuss the relations between a Banach space and its dual space,by means of the properties of extrem points of convex set in Banach space.
以收敛数列空间c和收敛于零的数列空间c0为例,应用空间凸集端点性质研究等工具,对Banach空间与其共轭空间的关系做某些探讨。
5) conjugate space
共轭空间
1.
l_(n_m)~p(1<p<∞) space,l_(n_m~△)~p(1<p<∞) space and their conjugate space;
l_(n_m)~p(1<p<∞)空间和l_(n_m~△)~p(1<p<∞)空间及其共轭空间
2.
Its complete space are conjugate space are given,andthe sufficient or neces-sary conditions are obtainedfor a linear operator fromRtoRto be continuous.
证明了赋范线性空间R∞={(an)|an∈R,{an}有界,‖(an)‖=supn≥1nλ|an|},R∞不完备,求出它的完备化空间和共轭空间,并给出该空间上线性算子连续的充分或必要条件。
3.
Using the method of vector sequence space, the geometric properties of Cesaro function space, including conjugate space, Schauder bases, weak sequential completeness, approximation property, Hproperty, Radon Nikodym property, reflexivity, Asplund property and convexity, etc.
用矢值序列空间方法研究Cesaro函数空间的几何性质,其中包括对共轭空间,Schauder基,弱序列完备性,逼近性,H性,RNP,自反性,Asplund性质和凸性质的讨论。
6) conjugate vector
共轭向量
1.
This paper presents a recursive implementation method for associative memory by constituting conjugate vectors,which can give ideal output when input vectors are linear independent,and offers simulation example
通过构造共轭向量,给出联想记忆的一种递归实现方法。
2.
Determining conjugate vectors is a key in conjugate direction algorithm.
共轭方向算法是非线性最优化理论中一类重要的算法,确定共轭向量是共轭方向算法的关键。
补充资料:共轭分子和非共轭分子
一类含碳-碳双键的烯烃分子,如果它们的双键和单键是相互交替排列的,称共轭分子;如果双键被两个以上单键所隔开,则称非共轭分子;如果共轭烯烃分子的碳链首尾相连接,则生成环状共轭多烯烃。例如,下列分子为共轭分子:
非共轭分子中的每个双键各自独立地表现它们的化学性能,一般可以用双键的性质来推断它们的性能;共轭分子中含有一个共轭体系,它们的物理和化学性质与非共轭烯烃不同,不能简单地把共轭双键看作是两个各行其是的双键的加和,而是形成一个新体系,表现出它特有的性能。最简单的共轭分子为1,3-丁二烯。
物理性质 ①吸收光谱:非共轭分子的最大吸收波长一般在200纳米以下;共轭分子的吸收则向长波方向移动,如1,3-丁二烯的最大吸收波长为217纳米。随着共轭双键数目的增加,吸收波长向长波方向移动,其吸收强度和谱线也随之增加。
② 折射率:所有共轭双烯的分子折射的增量都比隔离的双烯高。共轭分子中的电子体系很容易极化。
③ 键长:1,3-丁二烯中 C2-C3之间的单键长是1.483埃,C1匉C2、C3匉C4之间的双键长是1.337埃。乙烯中双键的键长是1.34埃,乙烷中单键的键长是1.53埃。因此,1,3-丁二烯中C2-C3之间的单键具有某些"双"键的性质。
④ 氢化热:一个碳-碳双键氢化时,一般放出30.3千卡/摩尔热量。但1,3-丁二烯氢化时,两个双键放出的热量只有57.1千卡/摩尔。这说明它比非共轭的分子含有较低能量,即共轭分子要比非共轭分子稳定。
化学性质 非共轭双烯,如1,4-戊二烯与一些亲电加成试剂如溴、氯化氢等加成时,先与一个双键起加成反应,再与另一个双键起加成反应。在同样条件下,用1,3-丁二烯与溴化氢、氯化氢加成时,有两种加成方式:一种是加在相邻两个碳原子上,称1,2加成反应;另一种是加在共轭分子两端的碳原子上,称1,4加成反应。1,4加成是共轭体系作为整体参加反应,又称共轭加成。这些加成反应是共轭分子本身的结构本质所决定的。
非共轭分子中的每个双键各自独立地表现它们的化学性能,一般可以用双键的性质来推断它们的性能;共轭分子中含有一个共轭体系,它们的物理和化学性质与非共轭烯烃不同,不能简单地把共轭双键看作是两个各行其是的双键的加和,而是形成一个新体系,表现出它特有的性能。最简单的共轭分子为1,3-丁二烯。
物理性质 ①吸收光谱:非共轭分子的最大吸收波长一般在200纳米以下;共轭分子的吸收则向长波方向移动,如1,3-丁二烯的最大吸收波长为217纳米。随着共轭双键数目的增加,吸收波长向长波方向移动,其吸收强度和谱线也随之增加。
② 折射率:所有共轭双烯的分子折射的增量都比隔离的双烯高。共轭分子中的电子体系很容易极化。
③ 键长:1,3-丁二烯中 C2-C3之间的单键长是1.483埃,C1匉C2、C3匉C4之间的双键长是1.337埃。乙烯中双键的键长是1.34埃,乙烷中单键的键长是1.53埃。因此,1,3-丁二烯中C2-C3之间的单键具有某些"双"键的性质。
④ 氢化热:一个碳-碳双键氢化时,一般放出30.3千卡/摩尔热量。但1,3-丁二烯氢化时,两个双键放出的热量只有57.1千卡/摩尔。这说明它比非共轭的分子含有较低能量,即共轭分子要比非共轭分子稳定。
化学性质 非共轭双烯,如1,4-戊二烯与一些亲电加成试剂如溴、氯化氢等加成时,先与一个双键起加成反应,再与另一个双键起加成反应。在同样条件下,用1,3-丁二烯与溴化氢、氯化氢加成时,有两种加成方式:一种是加在相邻两个碳原子上,称1,2加成反应;另一种是加在共轭分子两端的碳原子上,称1,4加成反应。1,4加成是共轭体系作为整体参加反应,又称共轭加成。这些加成反应是共轭分子本身的结构本质所决定的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条