1) continuous functor
连续函子
2) right continuous functor
右连续函子
3) cocontinuous functor
上连续函子
4) Continuous functionals and operators
连续泛函和算子
5) continuous functions
连续函数
1.
This paper considers some properties of continuous functions.
该文讨论了周期连续函数的若干性质,刻画了一些函数集合之间的包含关系。
2.
This article extends the zero-point theorem for continuous functions from a closed interval to other types of intervals,and a series of zero-point theorems for continuous functions on relevant intervals are obtained,so that the theory on the zero-point theorem can be applied in more general cases.
将闭区间上连续函数的零点定理扩展到其它区间上,得到若干个相应区间上连续函数的零点定理,从而使零点定理理论更完善、应用更广泛。
3.
In this paper,Stancu-integral type operators are first constructed on simplexes,then discusseions on approximation to continuous functions are made.
本文首先构造了单纯形上积分型 Stancu算子 ,其次讨论了它对连续函数的逼近 。
6) continuous function
连续函数
1.
The inferences about the property for continuous function of closed interval and the mean value theorem for derivatives;
闭区间上连续函数的性质定理及微分中值定理的推论
2.
One quality of continuous function and its application in solving inequality equations;
连续函数的一个性质及其在解不等式中的应用
3.
Many ways have been given to solve the maximization problem of the continuous function, however, there are some drawbacks more or less.
求解连续函数最大值的优化算法已有多种,但都不同程度地存在一定的局限性。
补充资料:连续函子
连续函子
continuous functor
连续函子【。川如以.加叱加r;.曰甲印“~曲巾y毗oP] “与极限可交换的函子”的概念的同义词.设叽与母为有极限的范畴.一个l位共变函子只讯~落称为连续的(coniin因璐),如果对于任何图J:勿~服都有F(1而J)=1而JF.这里的勿是一个任意的小图概形.更具体地,上述等式的意义如下:如果(A;料。,D已勿)是图J的极限,而拜。:A~J(D)(DCOb勿)是出现在极限定义中的态射,那么(F(A);F伽。),D任Ob勿)是图JF:勿~C的极限. 一个函子F:服一伍是连续的,当且仅当它与任意一族对象之积可交换,也可与任何态射对的核可交换.从况到集合的范畴的每个基本函子凡(X)二马(A,X)都是连续的.M.m.U~KO撰(补注1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条