1) induced vibrator
感应振动器
2) driven betatron
驱动感应加速器振荡
3) vibration sensors
振动传感器
1.
The system can be used to get more accurate data for testing low and ultra-low frequency vibration sensors.
振动台的波形失真度,振级稳定性、横向振动比、低频背景噪声等各项技术指标达到或超过国际标准,为低频、超低频振动传感器的检定提供更精更准确的检定装置。
2.
This system overcomes commonly used vibration sensors\' shortcomings,such as low sensitivity,small measuring range,material defects.
针对常用振动传感器灵敏度低、测量范围小以及材料缺陷等缺点,在分析光纤布拉格光栅(FBG)传感原理的基础上,设计了一种基于悬臂梁结构匹配光栅滤波解调的振动传感器。
4) vibration sensor
振动传感器
1.
An study of automatic calibration system for the vibration sensors;
振动传感器自动标定系统的研究
2.
Temperatur compensating method of novel fiber grating micro-vibration sensor;
一种新颖的纤栅式微振动传感器的温度补偿方法
3.
Reliability assessment based on performance degradation data for vibration sensors
基于振动传感器性能退化数据的可靠性评估
5) vibration transducer
振动传感器
1.
The system composition and working principle is introduced for the sinusoidal excitation measurement of vibration transducer sensitivity.
介绍了对振动传感器灵敏度进行正弦激励测量的系统组成及工作原理,讨论了基于LabVIEW的振动传感器灵敏度测量的系统设计与实现方法。
2.
In this thesis, we focus on dual axis capacitance vibration transducer, which was fabricated by Micro-electromechanical Systems (MEMS).
本论文研究了采用微机械加工技术(MEMS)制作的双轴电容式振动传感器,其基本工作原理是利用惯性质量块在外界加速度的作用下与检测电极间的空隙发生改变,从而引起等效电容的变化来测定振动加速度的。
6) vibration pickup
振动传感器
1.
Design of new-style InSb-In film magnetoresistive vibration pickup;
新型InSb-In薄膜磁阻式振动传感器的设计
2.
A new vibration pickup made of InSb-In eutectic film magnetoresistor is designed.
研制的振动传感器是一种利用锑化铟 铟 (InSb In)共晶体薄膜磁阻元件的磁阻效应的新型振动传感器。
补充资料:回旋加速器辐射和同步加速器辐射
当带电粒子(通常是电子)垂直注入均匀的恒磁场绕磁力线作圆周运动时,即使粒子的速率恒定,它也具有向心加速度,从而产生电磁辐射。由非相对论性(vc)低能电子发射的,叫回旋加速器辐射,由相对论性(v≈c)高能电子发射的,叫同步加速器辐射。它们首先是在回旋加速器和同步加速器中被观察到的,因而得名。有的文献中将两者统称回旋加速器辐射,苏联文献中常称为磁轫致辐射。
此两种辐射的偏振状态相似,都在垂直于磁场的方向上线偏振,在沿磁场的方向上圆偏振,在斜方向上一般是椭圆偏振(见光的偏振)。
两种辐射的频谱和角分布的特点有很大不同。回旋加速器辐射的谱是由拉莫尔角频率Ω0,及其谐频组成的分立谱(e和m0分别是电子的电荷和静止质量,B为磁感应强度,с为光速)。能量主要集中在基频,谐频成分极弱;辐射的方向性不强。相对论性电子的能量为γm0с2, 其中 v 是电子速度。 由于相对论效应,随着电子能量的增大,电子的质量m=m0γ增大,拉莫尔角频率 的数值减小,并因电子速度上的差异而有所分散,从而使回旋加速器辐射的谱线间隔减小,线宽加大。在极端相对论性条件下,辐射谱变为连续的,这便是同步加速器辐射。与回旋加速器辐射相比,同步加速器辐射具有以下一些不同的特征:
① 存在一个临界角频率(R为粒子轨道半径),在其附近能谱有极大值。ωωc时,辐射功率谱正比于ω时;ωωc时,正比于(ω/ωc)┩exp(-ω/ωc)。
随着γ 的增大,能谱的极大值向更高级的谐频转移。
② 对于给定的磁场,总辐射功率正比于γ2;对于给定轨道半径,它正比于γ4,即总辐射功率随粒子能量的增大而急剧增强。
③ 辐射的方向性极强,它像探照灯似地分布在以粒子运动方向为轴的极窄角锥内,锥的半角宽度θ~1/γ(见图)。
电子回旋运动产生电磁辐射的最早理论研究要追溯到20世纪初,G.A.肖脱于1912年计算了经典原子模型的辐射。40年代,Д.Д.伊万年科和И.Я.坡密朗丘克以及J.S.施温格曾考虑了这类辐射对设计圆形粒子加速器的重要性。尔后朱洪元(1948)和施温格(1949)发展了有关回旋加速器辐射的理论,这些理论公式已列入标准的教科书。理论计算表明,同步加速器中带电粒子能量U 因辐射而产生的损耗率为
q为电荷。此式表明,随U 的增加极快。此外,对于质量小的电子,这种辐射消耗特别严重(∞m0-4)。这种辐射是高能圆形轨道加速器中最主要的能量损失机制。为了减少它,通常要采用很大的半径R。
同步加速器辐射为人们提供了一种高度准直并可连续调谐的强光光源。特别是在真空紫外和X射线波段,尚无可用的激光器与之匹敌。50年代同步加速器辐射已被广泛研究,60年代前期,美国国家标准局(NBS)的K.科德林、R.P.马登和他们的合作者开始把180MeV的同步加速器当作辐射源用于原子光谱的研究。近年来美国、苏联、日本和西欧许多国家都开展了这方面的工作,用同步加速器或储存环发出的同步加速器辐射来进行光化学、生物学、固体及其表面、材料学、光子散射、非线性光学、X射线全息、X射线显微学、X 射线光刻等多方面的探索和研究。这方面的研究以前多借助于粒子物理学的装置,近年来一批专用的设备正在设计或制造中。
同步加速器辐射是天体物理学中一种重要辐射机制。目前普遍认为,很多具有幂律谱和偏振的非热宇宙射电辐射来源于高能粒子的同步加速器辐射。这类射电源中最著名的例子是为中国《宋史》记载的蟹状星云中心1054年爆发的超新星遗迹。
参考书目
G A.Schott,Electromagnetic Radiation,CambridgeUniv.Press, Cambridge,1912.
D.I.Vanenko and J. Pomeranchuk, Phys. Rev.,Vol.65,p.343,1944.
J. Schwinger, Phys. Rev., Vol 70, p.798,1946.
H. Y. Tzu, Proc. Roy. Soc., A192, P.231,1948.
J. Schwinger, Phys, Rev., Vol. 75, P.1912,1949.
J. D.杰克逊著,朱培豫译:《经典电动力学》,下册,人民教育出版社,北京,1980。(J.D.Jackson,Classical Electrodynamics, John Wiley & Sons, New York,1976.)
K. Codling and R.P.Madden,J.Appl.Phys.,Vol.36,p.380, 1965.
此两种辐射的偏振状态相似,都在垂直于磁场的方向上线偏振,在沿磁场的方向上圆偏振,在斜方向上一般是椭圆偏振(见光的偏振)。
两种辐射的频谱和角分布的特点有很大不同。回旋加速器辐射的谱是由拉莫尔角频率Ω0,及其谐频组成的分立谱(e和m0分别是电子的电荷和静止质量,B为磁感应强度,с为光速)。能量主要集中在基频,谐频成分极弱;辐射的方向性不强。相对论性电子的能量为γm0с2, 其中 v 是电子速度。 由于相对论效应,随着电子能量的增大,电子的质量m=m0γ增大,拉莫尔角频率 的数值减小,并因电子速度上的差异而有所分散,从而使回旋加速器辐射的谱线间隔减小,线宽加大。在极端相对论性条件下,辐射谱变为连续的,这便是同步加速器辐射。与回旋加速器辐射相比,同步加速器辐射具有以下一些不同的特征:
① 存在一个临界角频率(R为粒子轨道半径),在其附近能谱有极大值。ωωc时,辐射功率谱正比于ω时;ωωc时,正比于(ω/ωc)┩exp(-ω/ωc)。
随着γ 的增大,能谱的极大值向更高级的谐频转移。
② 对于给定的磁场,总辐射功率正比于γ2;对于给定轨道半径,它正比于γ4,即总辐射功率随粒子能量的增大而急剧增强。
③ 辐射的方向性极强,它像探照灯似地分布在以粒子运动方向为轴的极窄角锥内,锥的半角宽度θ~1/γ(见图)。
电子回旋运动产生电磁辐射的最早理论研究要追溯到20世纪初,G.A.肖脱于1912年计算了经典原子模型的辐射。40年代,Д.Д.伊万年科和И.Я.坡密朗丘克以及J.S.施温格曾考虑了这类辐射对设计圆形粒子加速器的重要性。尔后朱洪元(1948)和施温格(1949)发展了有关回旋加速器辐射的理论,这些理论公式已列入标准的教科书。理论计算表明,同步加速器中带电粒子能量U 因辐射而产生的损耗率为
q为电荷。此式表明,随U 的增加极快。此外,对于质量小的电子,这种辐射消耗特别严重(∞m0-4)。这种辐射是高能圆形轨道加速器中最主要的能量损失机制。为了减少它,通常要采用很大的半径R。
同步加速器辐射为人们提供了一种高度准直并可连续调谐的强光光源。特别是在真空紫外和X射线波段,尚无可用的激光器与之匹敌。50年代同步加速器辐射已被广泛研究,60年代前期,美国国家标准局(NBS)的K.科德林、R.P.马登和他们的合作者开始把180MeV的同步加速器当作辐射源用于原子光谱的研究。近年来美国、苏联、日本和西欧许多国家都开展了这方面的工作,用同步加速器或储存环发出的同步加速器辐射来进行光化学、生物学、固体及其表面、材料学、光子散射、非线性光学、X射线全息、X射线显微学、X 射线光刻等多方面的探索和研究。这方面的研究以前多借助于粒子物理学的装置,近年来一批专用的设备正在设计或制造中。
同步加速器辐射是天体物理学中一种重要辐射机制。目前普遍认为,很多具有幂律谱和偏振的非热宇宙射电辐射来源于高能粒子的同步加速器辐射。这类射电源中最著名的例子是为中国《宋史》记载的蟹状星云中心1054年爆发的超新星遗迹。
参考书目
G A.Schott,Electromagnetic Radiation,CambridgeUniv.Press, Cambridge,1912.
D.I.Vanenko and J. Pomeranchuk, Phys. Rev.,Vol.65,p.343,1944.
J. Schwinger, Phys. Rev., Vol 70, p.798,1946.
H. Y. Tzu, Proc. Roy. Soc., A192, P.231,1948.
J. Schwinger, Phys, Rev., Vol. 75, P.1912,1949.
J. D.杰克逊著,朱培豫译:《经典电动力学》,下册,人民教育出版社,北京,1980。(J.D.Jackson,Classical Electrodynamics, John Wiley & Sons, New York,1976.)
K. Codling and R.P.Madden,J.Appl.Phys.,Vol.36,p.380, 1965.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条