由于常用的可焊性表面敷层都伴随着脆化的风险,所以电子工业当前面临一些非常困难的问题。然而,这些脆化机理的表现形式存在可变性,故为避免或控制一些问题带来了希望。
在电子行业内,虽然每家公司都必须追求各自的利益,但是在解决无铅焊接的脆弱性及相关的可靠性问题上,他们无疑有着共同的利害关系,特别是考虑到过渡至无铅焊接技术的时间表甚短。
脆变问题影响
微电子封装工业依赖焊接点在各色各样的组件之间形成稳健的机械连接和电气互联,散热问题、机械冲击或振动往往给焊接点带来很大的负荷。在过去几年里,业界针对无铅技术进行了大量的开发工作。
最新的报告提出了一些出乎意料的建议:脆变问题与Cu和Ni/Au电镀的焊盘表面都有关系。事实上,没有任何常用的可焊性表面敷层能够一直免受脆变问题的影响。
随着无铅焊接技术的即将实施,这种境况可能在微电子工业引起严重的可靠性关注和基础结构问题。无论如何,脆变过程表现形式的可变性(至少是Cu焊盘系统),可以解释某些脆变机理,并且有望加以控制。
简而言之,焊点上的机械应力来源于插件板上施加的外力或焊接结构内部的不匹配热膨胀。在足够高的压力下,焊料的蠕变特性有助于限制焊点内的应力。即使是一般的热循环,通常也要求若干焊点能经受得住在每次热循环中引起蠕变的负荷,因此,焊盘上金属间化合物的结构必须经受得住焊料蠕变带来的负荷。在外加机械负荷的情况下,尤其是系统机械冲击引起的负荷,焊料的蠕变应力总是比较大,原因是这种负荷对焊点施加的变形速度比较大。因此,即使是足以承受热循环的金属间化合物结构,也会在剪力或拉力测试期间最终成为最脆弱的连接点。
然而,这不一定是问题的直接决定性因素,因为外加机械负荷往往能够在设计上加以限制,使之不会引起太大的焊料蠕变,或者至少不会在焊接界面引起断裂。尽管如此,在这些测试中,从贯穿焊料的裂纹变成焊盘表面或金属间化合物的断裂,就是一种不断脆化的迹象。通常,显示脆性界面破裂而无明显塑性变形的焊接是许多应用的固有问题,这些应用中的焊点冲击负荷是可以预见的。在这些情况下,焊点内的能量几乎没有多少能够在断裂过程中散逸出去,因此焊点的结构自然容易出现冲击强度问题。