说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 空间的畴数
1)  category of a space
空间的畴数
2)  category of topological spaces
拓扑空间的范畴
3)  category of vector space
向量空间的范畴
4)  categorical space
范畴空间
5)  spatial category
空间范畴
1.
Based on the theory of cognitive development , this dissertation discusses the development law of spatial category of Mandarin children.
本文以认知发展理论为理论基础,以一名普通话儿童Y12月——30月语言发展的日记记录为语料基础,探讨普通话儿童在空间范畴表达方面表现出来的规律。
6)  spatial categorization
空间范畴化
补充资料:拓扑空间
拓扑空间
topological space

   赋予拓扑结构的集合。如果对一个非空集合X给予适当的结构,使之能引入微积分中的极限和连续的概念,这样的结构就称为拓扑,具有拓扑结构的空间称为拓扑空间。引入拓扑结构的方法有多种,如邻域系、开集系、闭集系、闭包系、内部系等不同方法。下面介绍开集系方法。在微积分学中,实一维欧几里得空间R′上的开集具有性质:①任意个开集的并是开集 。②有限个开集的交是开集。③R′及空集!!!T1240_1是开集。对任一非空集合X,若X的一个子集族J满足:①J中元的任意并在J中。②J中元的有限交在J中。③X!!!T1240_2J中,则称JX的一个拓扑,J中的元称为开集,X连同拓扑J称为一个拓扑空间,记为(XJ)。
   对任意xX,如果Z的子集U包含含有x的一个开集则U称为x的一个邻域。如果X的子集A满足XA是开集,则称X是闭集。
   设X是非空集合,令J0={X!!!T1240_3},称(XJ0)为平庸拓扑空间,J0为平庸拓扑。令J1={AAÌX},称(XJ1)为离散拓扑空间。在离散拓扑空间中任意子集均是开集。对实数集R1,令J={BÌR1"xG,∈ε>0,使(xεxεÌG},则(R1J)就是一维欧几里得空间。类似地可定义n维欧几里得空间Rn
    设X是拓扑空间,如果X可写为非空开集的分离并,则X称为连通空间;如果对X中任意两点  ,存在X中的道路相连接,则称X为道路连通空间  ;如果X的任意开集作成的覆盖存在有限子覆盖  ,则称X为紧空间;如果X中的任意序列有收敛子列,则称X是列紧空间  ;如果X中任意两点都存在不相交的邻域  ,则称X是豪斯多夫空间(或T2空间)。上面所提连通性,道路连通性、紧性、列紧性、T2性均是拓扑不变性。连通空间上的实值连续函数具有介值性,即若fXR1连续,X是连通空间,r∈(fx1),fx2),则存在c∈(x1x2)(或c∈(x2x1)),使fc)=r。紧空间上的实值连续函数具有最大值、最小值。紧空间上的连续函数一致连续。若AÌRn,则A为紧,当且仅当A是有界闭集。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条