1) unbounded set of real numbers
无界实数集
2) all the unbounded real functions
一切无界实函数
1.
to express the class made up of all the bounded real functions,the class made up of all the unbounded real functions and the class made up of all the real functions respectively.
分别设用M表示集合B上一切有界实函数的类;表示集合B上一切无界实函数的类;表示集合B上一切实函数的类,且对假设的各种情形进行讨论,并分别证明M的势为2■。
3) unbounded set
无界集
1.
By virtue of the degree for condensing mapping on unbounded set, some well known fixed point theorems on bounded sets in Banach spaces were extended to the case that is on unbounded sets.
利用无界集上凝聚映射的拓扑度 ,将Banach空间中有界集上一些著名的不动点定理推广到无界集的情形·在有序Banach空间中建立了无界集上的不动点指数 ,证明了几个不动点及多不动点定理
4) closed unbounded set
无界闭集
1.
In this paper,we introduce concepts of closed unbounded sets and stationary sets,and investigate their poperties.
本文引进了~(
5) Wireless real-time data acquisition system
无线实时数据采集系统
6) unbounded coefficients
系数无界
1.
Existence-uniqueness of solutions for a class of parabolic equation with unbounded coefficients and its application;
一类系数无界抛物型方程解的存在唯一性及其应用
补充资料:一切
【一切】
(术语)该罗事物之称。玄应音义曰:“说文云:一切,普也。普即遍具之义,故切宜从十。说文,十谓数之具,从七者俗也。”史记曰:“臣观诸候王邸第百余,皆高祖一切功臣。”同索隐曰:“此一切,犹一例,同时也,非如他一切,训权时也。”胜鬘经宝窟中末曰:“一切止是该罗之名。”法苑珠林二十八曰:“一以普及为言,切以尽际为语。”无量寿经慧远疏上曰:“举一名余,故云一切。”智度论三十曰:“一切有二:一、名字一切,一、实一切。”
(术语)该罗事物之称。玄应音义曰:“说文云:一切,普也。普即遍具之义,故切宜从十。说文,十谓数之具,从七者俗也。”史记曰:“臣观诸候王邸第百余,皆高祖一切功臣。”同索隐曰:“此一切,犹一例,同时也,非如他一切,训权时也。”胜鬘经宝窟中末曰:“一切止是该罗之名。”法苑珠林二十八曰:“一以普及为言,切以尽际为语。”无量寿经慧远疏上曰:“举一名余,故云一切。”智度论三十曰:“一切有二:一、名字一切,一、实一切。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条