1) theory of sampling distribution
抽样分布理论
2) sampling distribution
抽样分布
1.
An approach to the estimation of confidence bounds of the shape and scale parameters of the twoparameter Weibull distribution is presented,which is completely different from existing approaches and based ontwo sampling distributions.
提出一种完全不同于现成方法的、以两个抽样分布为基础的估计双参数威布尔分布的形状参数和尺度参数的置信限的方法。
2.
In this paper,aimed at the outliers appeared in target tracking systems,based on the analysis on the Kalman filtering renovation sequence sampling and the sampling distribution functions,an activation function is introduced to correct the renovation sequence,and two kinds of Kalman filtering anti-outlier methods based on the and hypothesis testing model are advanced.
针对目标跟踪系统出现的观测量野值问题,在分析Kalman滤波新息序列样本统计量及其抽样分布函数的基础上,引入一种活化函数对新息序列进行修正,并提出了基于χ2检验模型和基于t检验模型的两种Kalman滤波抗野值方法。
3.
By defining Fisher classifier s output as a statistic,the bootstrap technique is used to obtain the sampling distributions of the out- puts for the positive class and the negative class respectively.
针对Fisher线性判别,本文提出了一种基于自助法抽样分布的ROC曲线生成方法。
3) Sample theory
抽样理论
1.
A fuzzy mathematic method combined with the sample theory obtanis satisfied evaluation result with less cost.
把抽样理论和模糊数学结合起来的方法 ,以较小的成本得到满意的综合评价结果 ,在科研管理、法制计量监督方面都已获应
4) sampling theory
抽样理论
1.
Design method of channel model for UWB-OFDM systems based on sampling theory;
基于抽样理论的UWB-OFDM系统信道模型设计
2.
The mechanism of image transmission in fibre optic image devices is analysed by sampling theory in this paper.
该文运用抽样理论分析了光纤传像元件的传像机理,导出了光纤传像元件分辨率测量中所产生的莫尔条纹线对数与原鉴别率板图案线对数之间的关系。
5) theoretical sampling
理论抽样
1.
According to IWO s(1968)method, we determine the theoretical sampling number and sample to get the following model: N=(t/D) 2(1.
根据Iwao(1968)方法拟合,确定理论抽样数及序贯抽样,其模型分别为:N=(t/D)2(1。
2.
latus would be estimated by 5 aggregative indices, α and β value of Iwao’s -m linear regression and a, b value of Taylor’s power series, and aggregative causes analysed by λ value of aggregative means, and the theoretical sampling for different density of the mite by formula n=t2D2(α+1m+β-1) of Iwaokoun.
将在4个不同品种、树龄、地形的柑桔园内调查所得的7组侧多食跗线螨在柑桔夏、秋梢上的资料,用5种聚集指标、Iwao的m-m直线回归的α、β值和Taylor幂法则的a、b值测定其空间分布型,用聚集均数λ值分析其聚集原因,用Iwaokuno的理论抽样公式计算不同虫口密度下的理论抽样数。
3.
In addition,the theoretical sampling number was obtained.
此外,还利用了分布型参数确定了桃蛀螟幼虫的理论抽样数。
6) theoretical sampling number
理论抽样数
1.
4539)] for determining the optimum theoretical sampling number was proposed.
在此基础上,提出了最适理论抽样数模型[N=t2/D2(0。
补充资料:抽样分布
抽样分布
sampling distribution
用样本平均数牙代替p来计算统计量丫:丫二二x‘一至。(n一1)S盆._.。_二。._‘那=万二”一二=扩一。此时,丫服从自由度,-n一1的丫分布。如图所示,丫分布是随自由度不同而八抽衬月‘异的一组曲线,曲线倾斜,且随自由度减小倾斜度加剧.犷的定义域为(0,co).实际上任一统计t只要其密度函数与P(护)相符都是具有矛分布的统计量. F分布设分分布在一个具有方差为砂的正态总体X中随机独立地抽取容t为n,和n:的两个随机样本,各有平均数厉,和,则‘兰户于二)’和夏(等鱼)’分别为“由度价=,,一1和板二n:一1的丫统计量,这两个丫分别除以各自的自由度后的比值定义为F,即。X:,/(nl一1)厂二二二.,,穿-牛吧-一一--~,尸丁 瓜‘八nZ一1)由于丫=(摊一1)52 a2所以F~S,2/凡2,即F值是具有自由度,1的样本方差S,2和自由度,:的样本方差522的比值.统计量F分布的密度函数为:P(F)=,,口,+吮1几—夕 艺 立汪Flz吮2F冬一1厂‘专,厂‘专,,。,、立土纽气,l尸十吮夕舍︵占心式中,、和均分别为F的分子凡2和分母凡2的自由度,是P(F)的两个参数.F分布的:定义域(0,00),F长分布曲线是随,,和,:不同而异的一组曲线,通常是偏斜的(见图)。心晚,iF分布(方萍)本,并计算它们的平均数记作至:.,又从平均数为p:,方差为。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条