1) a set of positive integers.
正整数集合
2) the set of all positive integers
正整数集
3) the positive integral in Liouville gathers
刘维尔正整数集
4) positive integral solution
正整数解
1.
With a recursive sequence,quadratic remainder and congruence,the diophantine equation x2-3y4=97 is proved that it has only positive integral solutions(x,y)=(10,1).
运用递归数列,同余式和平方剩余证明了不定方程x2-3y4=97仅有正整数解(x,y)=(10,1)。
2.
Let p be a prime number,using Fermat Infinite method of descent,to study the positive integral solution of the equations x~4±3px~2y~2+3p~2y~4=z~(2) and x~4±6px~2y~2-3p~2y~4=z~(2).
设p为素数,利用F erm at无穷递降法,研究方程x4±3px2y2+3p2y4=z2与x4±6px2y2-3p2y4=z2正整数解的存在性,证明该方程在p≡5(m od 12)时均无正整数解,在p≡11(m od 12)时有解且有无穷多组正整数解,获得方程无穷多组正整数解的通解公式和方程的部分正整数解。
3.
By using computer language, we get all the positive integral solution of x2±xy+y2 = P and x2±xy+y2 = 3p within the scope of arbitrarily.
讨论了方程x2±xy+y2=k的可解性,利用C语言编写出方程x2±xy+y2=p和x2±xy+y2=3P的计算程序,并获得方程在一定范围内的所有正整数解。
5) positive integer solution
正整数解
1.
An equation involving the pseudo Smarandache function and its positive integer solutions;
关于伪Smarandache函数的一个方程及其正整数解
2.
On the necessary condition of one class of hyperelliptic equations having the positive integer solutions;
一类超椭圆方程有正整数解的必要条件的问题
3.
A function equation related to the Smarandache function and its positive integer solutions;
一个与Smarandache函数有关的函数方程及其正整数解
6) Positive integer
正整数
1.
The equation xn+yn=zn(n>2)(The letters are all positive integer except especially mentioned) was proven by quadratic equation.
即:不定方程xn+yn=zn(n>2)(本文的各种字母没有特别指出时,都表示是正整数),当x=10a时,z不等正整数。
2.
Let n be positive integer,f(n) here refers to the mininum mumber of 1 when n can be expressed by 1,+,× and().
设n为正整数,f(n)是可以用1以及任意多个+号和×号(以及括号)来表示n时所用1的最少的个数。
3.
Based on the literature([1]),we apply 1+12~2+13~2+…+=π~26 to study the estimation of any subdivide numbers of a positive integer where N and the subdivide numbers allow to be disorder and repeated.
在文献[1]的基础上,应用1+122+123+…+=π26来讨论正整数N的无序允许重复的任意剖分数的估计,从而给出了正整数无序允许重复剖分数的一个较优的上界估计式。
补充资料:正整数
即“自然数”(1159页)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条