1) infrared fire-control system
红外射击控制系统
2) infrared fire-control equipment
红外射击控制设备
3) IR radiation control
红外辐射控制
1.
In the paper,we give a framework of IR radiation control system,which aim at achieving the inosculation of the IR radiation of target and that of the back.
本文介绍了电致变发射率和半导体电致变温的基本原理和器件结构,具体分析了晶态氧化钨薄膜、聚苯胺薄膜和半导体等作为电致变发射率材料的特点,提出了一种目标红外辐射控制系统原理, 为实现目标红外辐射与背景红外辐射的融合、降低目标的可检测性理清了思路。
4) infrared catadioptric systems
折反射红外系统
5) infrared remote controlled system
红外遥控系统
1.
After introducing the general principles of transmitting and receiving,discussion on the design of an infrared remote controlled system based on PT2248,MIM-R1AA38KHZ and CPLD decoder are performed in detail in the paper.
探讨了一种较为典型的红外遥控系统的设计思路,介绍了由PT2248作为发送器,MIM-R1AA38KHZ红外一体化接收解调器作为接收器的红外遥控系统的构建方法,并着重介绍了基于EDA技术的CPLD解码器的设计思想。
6) infrared guidance system
红外制导系统
1.
In an infrared guidance system,the atmosphere attenuation has an significant influence on infrared detection.
在红外制导系统中,大气衰减作用对红外探测有重要影响。
2.
The characteristics of infrared guidance system and acquisition procedure of seeker to remote distance target are narrated in the paper,and the structure of missile simulator and integrated test process of missile with aircraft equipments is introduced.
本文叙述了红外制导系统的特点和导引头对远距离目标的截获过程,并介绍了导弹仿真系统的结构和导弹与机载设备的综合试验程序,最后对测试误差进行了分析。
补充资料:红外辐射大气衰减
红外辐射在大气中传播时,由于大气中各种成分的吸收和散射而引起的辐射功率的逐渐衰减。
大气是一种具有非常高的时空变易性的吸收物质和散射物质。因此,这种衰减过程是极其复杂的,它与辐射传播过程中的温度、压力、大气的性质、粒子的大小和所使用的波长,甚至与地形都有关系。只有知道这些因素的变化,才能准确获得红外辐射在大气中的衰减情况。因此,为了解决某些实际的应用问题,需要实地、适时地进行衰减测量。
大气中各种气体分子吸收红外辐射,使辐射能转变为其他形式的能量;同时,大气中的尘埃和水滴等粒子又将辐射散射到四面八方,因而在前进路程中的辐射功率也要减小。
由于大气的吸收,红外辐射在前进路程上的功率按指数式衰减(假定是平行光束, 没有发散问题)。若x=0处的辐射功率为I0,在路程x处的辐射功率为I,则
α为辐射功率衰减到一半所需的距离的倒数,称为吸收系数,与波长有关。同样,由于大气的散射,红外辐射功率的衰减也可写成
β为散射系数,也与波长有关。因此,对于一定的波长,红外辐射的大气衰减规律为
式中κ=α+β,称为大气的衰减系数。
实际上,红外辐射在大气中传播时,主要的吸收来自水汽,其次来自二氧化碳。表列出水汽和二氧化碳的较强吸收带。这些带间的空隙形成了一些所谓天体辐射的"红外窗口",其中最宽的是在8~13微米处(其中9.5微米附近有臭氧的吸收)。17~22微米是半透明窗口。22微米以后直到1毫米处,由于水汽的严重吸收,对天体的红外辐射是完全不透明的。但是,在海拔较高,空气干燥的地方,22微米以后的红外辐射也有较高的透过率。例如,在海拔3.5公里的高度处,测量结果见表。
大气对红外辐射的散射,主要取决于大气中所包含的各种粒子的大小。对于空气分子(粒子很小),其散射量反比于辐射波长的4次方;而尘埃,水滴等的散射量大致与波长的1.3次方成反比。
图为海平面上约1.83公里水平路程(有17毫米可降水分)的大气透射比曲线。
大气是一种具有非常高的时空变易性的吸收物质和散射物质。因此,这种衰减过程是极其复杂的,它与辐射传播过程中的温度、压力、大气的性质、粒子的大小和所使用的波长,甚至与地形都有关系。只有知道这些因素的变化,才能准确获得红外辐射在大气中的衰减情况。因此,为了解决某些实际的应用问题,需要实地、适时地进行衰减测量。
大气中各种气体分子吸收红外辐射,使辐射能转变为其他形式的能量;同时,大气中的尘埃和水滴等粒子又将辐射散射到四面八方,因而在前进路程中的辐射功率也要减小。
由于大气的吸收,红外辐射在前进路程上的功率按指数式衰减(假定是平行光束, 没有发散问题)。若x=0处的辐射功率为I0,在路程x处的辐射功率为I,则
α为辐射功率衰减到一半所需的距离的倒数,称为吸收系数,与波长有关。同样,由于大气的散射,红外辐射功率的衰减也可写成
β为散射系数,也与波长有关。因此,对于一定的波长,红外辐射的大气衰减规律为
式中κ=α+β,称为大气的衰减系数。
实际上,红外辐射在大气中传播时,主要的吸收来自水汽,其次来自二氧化碳。表列出水汽和二氧化碳的较强吸收带。这些带间的空隙形成了一些所谓天体辐射的"红外窗口",其中最宽的是在8~13微米处(其中9.5微米附近有臭氧的吸收)。17~22微米是半透明窗口。22微米以后直到1毫米处,由于水汽的严重吸收,对天体的红外辐射是完全不透明的。但是,在海拔较高,空气干燥的地方,22微米以后的红外辐射也有较高的透过率。例如,在海拔3.5公里的高度处,测量结果见表。
大气对红外辐射的散射,主要取决于大气中所包含的各种粒子的大小。对于空气分子(粒子很小),其散射量反比于辐射波长的4次方;而尘埃,水滴等的散射量大致与波长的1.3次方成反比。
图为海平面上约1.83公里水平路程(有17毫米可降水分)的大气透射比曲线。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条