1) omnidirectionary differential intensity
全向微分强度
2) Radial Intensity Profile
强度径向分布
3) micro-strength
显微强度
1.
Measurement of coke micro-strength and its relation with coals property;
焦炭显微强度的测定及其与煤性质的关联
4) perturbation strength
微扰强度
5) microshear strength
微剪强度
1.
A new test method of estimating properties of material and welded joint, the microshear test, has been developed to investigate the microshear strength and microshear plasticity as well as microshear toughness of X60 and X65 pipeline steels and its spiral submerged arc welded joints.
采用一种新型的金属材料及焊接接头力学性能试验方法——微型剪切试验,研究了X60和X65管线钢及其螺旋埋弧焊焊接接头的微剪强度、微剪塑性、微剪韧性等性能参数。
6) micro-unit strength
微元强度
1.
Based on the characteristics that the failure of rock micro-unit accorded with normal distribution, this paper developed a statistical damage constitutive model reflecting the full process of rock failure by using the stress-strain curve of rock and introducing into the parameter that can rationally describe the micro-unit strength of rock.
根据岩石微元强度服从正态分布的特点,引进能合理描述岩石微元强度的参量,基于岩石三轴应力应变试验曲线建立了反映岩石破裂全过程的统计损伤本构模型。
2.
By discussing the form of new rock micro-unit strength based on Mohr-Coulomb criterion, which satisfies Weibull random distribution, a statistical damage softening constitutive model reflecting the full process of rock failure was developed based on the stress-strain curve of tri-axial tests for rocks.
从探讨基于Mohr-Coulomb准则的新的岩石微元强度表示方法及其服从Weibull随机分布的特点出发,基于岩石三轴应力应变试验曲线,建立了反映岩石破裂全过程的损伤软化统计本构模型。
3.
Based on the characteristics of random distribution of fissure,void and interface,and the concept of random distribution of strength of rock micro-unit,this authois brought forward computation formulae for rock micro-unit strength using Drucker-Prager criterion.
从岩石内部裂隙、空洞和界面等缺陷的随机性分布特征出发,基于反映岩石内部缺陷的微元强度服从随机分布的概念,并基于Drucker Prager岩石破坏准则,提出了岩石微元强度的表示方法。
补充资料:原子径向分布函数
分子式:
CAS号:
性质:电子出现在半径为r的球面附近单位厚度球壳内的概率,以符号D(r)表示。通常定义D(r)为:D(r)=4πr2R2(r),其中R(r)为原子轨函中的径向部分。它反映电子云的分布随半径r的变化情况。对氢原子而言,径向分布函数最大值在r等于玻尔半径α0处,在此意义上可以说玻尔轨道是氢原子结构的粗略近似。
CAS号:
性质:电子出现在半径为r的球面附近单位厚度球壳内的概率,以符号D(r)表示。通常定义D(r)为:D(r)=4πr2R2(r),其中R(r)为原子轨函中的径向部分。它反映电子云的分布随半径r的变化情况。对氢原子而言,径向分布函数最大值在r等于玻尔半径α0处,在此意义上可以说玻尔轨道是氢原子结构的粗略近似。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条