1) steady electric field
稳恒电场
2) steady electromagnetic field
稳恒电磁场
1.
The total momentum of steady electromagnetic field is discussed.It is pointed outthat,as a general rule,the total momentum is not zero.
本文讨论稳恒电磁场的总动量,指出在一般情况下其总动量不等于零,给出等于零的条件,最后讨论场动量与实物动量的转换。
3) steady current field
稳恒电流场
1.
Approach the reasons for modelling of electrostatic field by the steady current field;
关于用稳恒电流场模拟静电场原因的探讨
2.
In this paper,accidental error method and the unitary linear returning method and the duality linear returning method are used to deal with the experimental data based on the experiment of describing electrostatic field simulated by steady current field.
用A类标准不确定度方法、一元线性回归方法、二元线性回归方法分别处理稳恒电流场模拟静电场中得出的实验数据,通过理论分析与数值比较,讨论了三种方法的特点。
3.
Several resistance calculation of large uniform diclectric examples by the duality between steady current field and electrostatics field were analyzed.
利用稳恒电流场与静电场的对偶性,通过几个例子,求解均匀大块导电介质的电阻计算问题,探讨了建立物理模型应该注意的问题。
4) nonstable electromagnetic field
非稳恒电磁场
1.
A new mathematical expression for nonstable electromagnetic field;
非稳恒电磁场的数学表达的新形式
5) Permanent current magnetic field
稳恒电流磁场
6) electrostatic field and magnetic field of steady current
静电场和稳恒电流磁场
1.
From the formula for the field strength of a point charge,by means of the transformation of the field strength tensor in the special theory of relativity,the laws of electrostatic field and magnetic field of steady currents are derived in this paper to give the students a better understanding of the consistency of electric field and magnetic field.
从点电荷的场强公式出发,根据狭义相对论中场强张量的变换,推导出了静电场和稳恒电流磁场的诸定律,使学生对电场和磁场的统一性有了更为深刻的认识。
补充资料:稳恒电场
不随时间变化的电场。在稳恒情况下,一切物理量都不随时间变化,电荷分布当然也是如此。从这个意义上说,稳恒电场同静电场相同,静电场所遵从的基本规律(高斯定理和安培环路定理)在稳恒电场中仍然成立。但是静电场除了要求电荷分布不随时间变化外,还要求电荷不流动。因此,静电场中导体内部场强处处为零,导体的电位处处相等,且在导体表面外附近,电场同导体表面垂直;此外,静电场中没有电流,不存在电流产生的磁场,即静电场与磁场没有必然的联系。稳恒电场只要求电荷分布不随时间变化,允许导体中存在不随时间变化的电流。因此,稳恒电场中导体内部的电场强度可以不为零,导体内两点之间可以有电位差,在导体表面外附近,电场同导体表面一般不垂直;此外,稳恒电场总是伴随着稳恒磁场。
稳恒电流场和非静电力 在稳恒电场作用下,导体内部自由电荷作稳恒流动,形成稳恒电流场,流入任意区域的电流等于流出该区域的电流,即对任意封闭曲面S,电流密度J的总通量为零
,
或电流密度J的散度恒为零
,
此式称为电流的稳恒条件。由此可得出稳恒电流场的电流线(即这样一些曲线,曲线上每一点的切线方向都同该点的电流密度J的方向一致)必定是闭合曲线。然而导体中电荷的流动必定造成能量的耗散,仅有稳恒电场不可能维持电流线的闭合性。因此,要维持稳恒电流,必须有非静电力的作用。提供非静电力的装置是电源,它把其他形式的能量转换为电能以维持电荷的稳恒流动。稳恒电流是在电场力和电源提供的非静电力共同作用下形成的。以K表示作用在单位正电荷上的非静电力,普遍的欧姆定律微分形式应在欧姆定律微分形式J=σE 中加上非静电力的贡献,即成为
,
式中σ为导体的电导率。在电源的外部,K=0,只有电场,上式化为J=σE;在电源的内部,除了存在电场之外,还有非静电力K。K的方向同E的方向相反。当电源与用电器相连接时,在电源内部,非静电力克服电场力的反作用,将正电荷由电源的负极移动到正极,消耗电源所贮存的能量,提高电荷的电势能;而在电源外的电路中,电场力的作用使正电荷由正极回到负极,其电势能降低,转化为电路中耗散的热和其他形式的能量。在整个路程中,电流形成闭合循环。
稳恒电流不会造成电荷的累积,而且均匀导体内部没有净电荷,电荷只能分布在导体的表面以及导体中电导率不均匀的地方,并且不随时间改变,它们是激发稳恒电场的源。因此稳恒电流、电荷分布以及稳恒电场是相互制约的。
基本公式 在稳恒情况下,电场和电流满足的方程为
高斯定理
,
环路定理
,
稳恒条件
,
描述电介质性质的方程 ,
。
环路定理说明存在电位嗞,引入。
在均匀导体中,不存在非静电力(K=0)的区域内,电位满足拉普拉斯方程
。
在界面上(忽略接触电位差),电位满足的边界条件是:①电位函数连续,嗞1=嗞2;②电流密度的法向分量连续,即。当电介质的分布及非静电力给定时,可根据以上方程确定稳恒电场和电流的分布。
稳恒电流场的电位同静电场的电位满足相同的拉普拉斯方程(见泊松方程和拉普拉斯方程),当它们具有相似的边界时,方程的解是相似的。因此可用稳恒电流场模拟静电场,这是实验研究静电场的常用方法。
稳恒电流场和非静电力 在稳恒电场作用下,导体内部自由电荷作稳恒流动,形成稳恒电流场,流入任意区域的电流等于流出该区域的电流,即对任意封闭曲面S,电流密度J的总通量为零
,
或电流密度J的散度恒为零
,
此式称为电流的稳恒条件。由此可得出稳恒电流场的电流线(即这样一些曲线,曲线上每一点的切线方向都同该点的电流密度J的方向一致)必定是闭合曲线。然而导体中电荷的流动必定造成能量的耗散,仅有稳恒电场不可能维持电流线的闭合性。因此,要维持稳恒电流,必须有非静电力的作用。提供非静电力的装置是电源,它把其他形式的能量转换为电能以维持电荷的稳恒流动。稳恒电流是在电场力和电源提供的非静电力共同作用下形成的。以K表示作用在单位正电荷上的非静电力,普遍的欧姆定律微分形式应在欧姆定律微分形式J=σE 中加上非静电力的贡献,即成为
,
式中σ为导体的电导率。在电源的外部,K=0,只有电场,上式化为J=σE;在电源的内部,除了存在电场之外,还有非静电力K。K的方向同E的方向相反。当电源与用电器相连接时,在电源内部,非静电力克服电场力的反作用,将正电荷由电源的负极移动到正极,消耗电源所贮存的能量,提高电荷的电势能;而在电源外的电路中,电场力的作用使正电荷由正极回到负极,其电势能降低,转化为电路中耗散的热和其他形式的能量。在整个路程中,电流形成闭合循环。
稳恒电流不会造成电荷的累积,而且均匀导体内部没有净电荷,电荷只能分布在导体的表面以及导体中电导率不均匀的地方,并且不随时间改变,它们是激发稳恒电场的源。因此稳恒电流、电荷分布以及稳恒电场是相互制约的。
基本公式 在稳恒情况下,电场和电流满足的方程为
高斯定理
,
环路定理
,
稳恒条件
,
描述电介质性质的方程 ,
。
环路定理说明存在电位嗞,引入。
在均匀导体中,不存在非静电力(K=0)的区域内,电位满足拉普拉斯方程
。
在界面上(忽略接触电位差),电位满足的边界条件是:①电位函数连续,嗞1=嗞2;②电流密度的法向分量连续,即。当电介质的分布及非静电力给定时,可根据以上方程确定稳恒电场和电流的分布。
稳恒电流场的电位同静电场的电位满足相同的拉普拉斯方程(见泊松方程和拉普拉斯方程),当它们具有相似的边界时,方程的解是相似的。因此可用稳恒电流场模拟静电场,这是实验研究静电场的常用方法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条