说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 不可解度
1)  degrees of unsolvability
不可解度
2)  insolvability assessment
不可解程度评估
3)  degree of recursive unsolvability
递归不可解度
4)  infeasible solution
不可行解
1.
When genetic algorithm (GA) is used to solve the problems of distribu tion network reconfiguration, the infeasible solution will become a difficult pr oblem.
不可行解是遗传算法应用于配电网重构时遇到的一个难题。
2.
This method searches the solution space of the problem through the admixture crossover of feasible and infeasible solutions,and performs the selection operation on feasible and infeasible populations respectively.
该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。
3.
The construction of infeasible solution to JSSP is analyzed and a necessary and sufficient condition of infeasible solution is given.
讨论 Job shop排序问题不可行解的构造情况 ,给出了不可行解的一个充要条件以及 2台机器n个加工工件的 Job shop问题不可行解和可行解的计算公式 ,并由此得到一种概率模型的计算方法。
5)  unsolvable ['ʌn'sɔlvəbl]
不可求解
1.
As a result,the proof is given to the theorem that"the bearings only locating and tracking system remains unsolvable prior to an observer maneuver.
对纯方位系统定位与跟踪解的存在唯一性问题进行了讨论 ,对“观测器保持匀速直线运动 ,则纯方位系统定位与跟踪不可求解”定理分别就确定性参数计算和最小二乘意义给出了证明 ,引申出了一些结论。
6)  Unattainable solution
不可达解
补充资料:不可解度
      从比较计算难易程度出发来研究自然数子集分类的递归论分支。在某种标准下计算难度相同的集合形成这种标准下的一个度。递归论中研究得比较多的两种度是m度与图灵度。
  
  设A与B是两个非负整数的子集,假若存在递归函数??使得
  则称A可m归约于B(见图1)并记为
  。如果A可m归约于B,就把判定x是否属于A的问题化归为判定??(x)是否属于B的问题,因为??是可计算函数,所以关于A的判定计算问题不难于B,而且若B是可计算的则A也是可计算的。如果且,则称A与B是m等价的并记为,类被称为A的m度。假若B是递归可枚举集且任何递归可枚举集A都可m归约于B,则称B是m完备的。关于图灵机停机问题的集合就是一个m完备集。
  
  设B的补集为峫,要判定元素x在不在峫中,只要判定x在不在B中就可以了,因此直观上峫应该可归约于B。但是上面给出的m归约办不到这一点。例如,噖 不可m 归约于K。因此需要有新的更一般的归约标准,图灵归约(见图2)是其中最重要的一个。
  
  称"A图灵归约于B"(或"A递归于B",或"A相对于B可计算")是指:有一个算法 T,当输入非负整数x时,依据该算法进行的计算过程中,可以随时向外息源询问"y是否属于B"这样的问题,并根据外息源的回答来决定下一步计算怎样进行,直到给出x是否属于A时为止。
  
  用""表示"A图灵归约于B",用""表示 "且"。记并称其为 A的图灵度。若则记作deg(A)≤deg(B)。若deg(A)≤deg(B)但则记作deg(A))。若且则称deg(A)与deg(B)为不可比度。若B是递归可枚举集且对任何递归可枚举集A都有A≤iB,则称B是(图灵)完备集。K与噖 是完备集。
  
  一切递归集形成一个度,用Ο表示递归集的度。因为任何集 B与递归集A有关系,所以对任何度a都有Ο≤a,即Ο是最小的度。用Ο┡表示完备集K的度,显然任何完备集都在度Ο┡中。因为K不是递归集,故有Ο<Ο┡。用[Ο,Ο┡]表示度类{a:Ο≤a≤Ο┡}。
  
  一个度中若有一个递归可枚举集,则称这个度为递归可枚举度。因为Ο┡是完备集的度,所以对任何递归可枚举度a都有Ο≤a≤Ο┡。是否有递归可枚举度a使Ο<Ο┡呢?这个问题是递归论中有名的波斯特问题。1956~1957年,A.A.穆切尼克与R.M.弗里德贝格创造了有穷损害方法证明了在[Ο,Ο┡]中有两个互不可比的递归可枚举度,从而肯定地解决了波斯特问题。
  
  称集合为集合A的跃变,把A的跃变记为A┡。 度a=deg(A)的跃变度记为 a┡=deg(A┡)。度Ο的跃变度是Ο┡。对于任何递归可枚举度a,它的跃变度a┡满足Ο┡≤a┡≤Ο″,若有Ο┡=a┡则称递归可枚举度 a为低度,若有Ο″=a┡则称a为高度。
  
  存在度α使Ο<α<Ο┡且对任何度b若b≠Ο则b≮α,这样的度a叫极小度。不存在非Ο的递归可枚举度是极小度。[Ο,Ο┡]的基数与实数区间[0,1]的基数相同,[Ο,Ο┡]也存在类似的稠密性质。[Ο,Ο┡]是上半格但不是格,每一个可数分配格都可嵌入 [Ο,Ο┡]中。存在一对非Ο的递归可枚举度,它们的最大下界是Ο;不存在一对非Ο的递归可枚举度,它们的最大下界是Ο而最小上界则是Ο┡。
  
  研究在[Ο,Ο┡]上的偏序性质特别是代数结构性质是不可解度理论的重要内容。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条