2) aerodynamic characteristics of finite wings
机翼空气动力特性
3) missile aerodynamics
导弹空气动力学
4) aerodynamic missile
[军]空气动力导弹
6) aerodynamic characteristics
空气动力特性
1.
On a cold state test rig and two 1025t/h boilers a cold state test was conducted of the aerodynamic characteristics of a dual register vortex burner with the use of a isothermal modeling method.
在冷态实验台和两台1025t/h锅炉上,利用等温模化方法对双调风旋流燃烧器的空气动力特性进行了冷态试验。
2.
Based on the analysis of the aerodynamic characteristics,the simulation model of the turning process is established,several important factors which have an influence on the vehicle driving stability are investigated,and the comparatively precise mathematic model is b.
以 CA770轿车为研究对象 ,从汽车结构角度考虑空气力和空气力矩对汽车回转时的影响 ,对汽车稳态回转时的主要参数进行计算 ,在考虑空气动力特性的情况下 ,分析影响操纵稳定性的重要因素 ,并建立汽车稳态转弯过程的数学模型。
3.
The experimental study of aerodynamic characteristics of large caliber duplex ammunition in HG 4 0.
3m 高速风洞中进行的某研究型大口径机枪双头弹空气动力特性试验研究。
补充资料:有翼导弹空气动力特性
气流绕经有翼导弹时所产生的空气动力、力矩和表面压力分布随导弹外形和导弹在大气中的运动(包括马赫数、雷诺数、迎角、侧滑角、旋转角速度以及沉浮速度等)而变化的规律。有翼导弹的空气动力外形设计和空气动力特性具有下列一些特点:①为满足贮运、临战和结构方面的要求,战术导弹的翼面展弦比很小,一般不超过3。②为了跟踪机动目标,战术导弹应有很高的机动能力,过载系数大都在20以上,甚至可达60。③战术导弹经常装有一个或多个助推器,使全弹的空气动力外形复杂化,而且存在助推器分离时的空气动力干扰问题。④有翼导弹的发射场所多变,可以从空中的飞机或直升机上发射,也可以从水面或水下的舰艇发射。⑤巡航导弹的飞行速度不高,主要依靠隐蔽突防,因而出现了超低空飞行的种种问题,如地形跟踪和海浪响应等。通过外形设计来减小雷达波反射量,也是一种重要的隐蔽手段。
有翼导弹空气动力布局 战术导弹的空气动力布局型式较多,诸如正常式、鸭式(稳定操纵翼面位于弹翼之前)、无尾式、三组串翼式和长边条组合式等。导弹没有起飞和着陆滑跑问题,故广泛采用十字形和×形翼面布局,无需滚转便能直接产生侧向气动力。前后两组翼面可以是++、××和+×、×+形的,也可采用一字和十字或×形的组合,有的战术导弹在飞行中全弹不断滚转,也有的仅尾翼段自由滚转。助推器分串联式和并联式两种。串联式布置在导弹尾端,通常只有 1个助推器;并联式布置在导弹侧围,可以只有1个(巡航导弹),也可多至4个。 至于采用空气喷气发动机的有翼导弹,进气口的布局也有多种形式。巡航导弹大都采用类似飞机的空气动力布局,其着眼点不在机动性而在巡航效率。
大迎角空气动力特性 高机动性要求和小展弦比的限制,迫使战术导弹空气动力设计趋向于大迎角,当迎角大于20°时弹翼的绕流是前缘脱体涡流型(见旋涡)。前缘脱体涡不仅能避免因翼面气流分离而出现的失速现象,而且还能提供相当可观的非线性升力(见机翼空气动力特性)。在大迎角下,弹身侧面的分离气流也会形成脱体涡,提供弹身的非线性升力。为了加强脱体涡并使之稳定而不破裂,弹身的横截面形状可以做成扁圆的,或在圆弹身两侧加设小边条。在边条翼和拐折翼上,边条和内翼部分产生脱体涡,外翼部分仍为附着涡,称为混合流型,起延缓失速的作用,但仍保持升力随迎角线性变化的特性。
复杂空气动力干扰问题 在有翼导弹空气动力方面,气动干扰问题显得比孤立部件更为重要。首先是弹身的尺寸很大,所以翼身空气动力干扰很严重,弹翼和弹身的脱体涡使干扰越加复杂。其次是前翼组拖出的前缘脱体涡和后缘涡以及弹身脱体涡等对后翼组的洗流干扰效应。导弹通常采用火箭发动机,喷口处的落压比远比飞机的空气喷气发动机大,因而喷流的自由膨胀率很高,对导弹后段(包括该处的翼面)产生严重的干扰效应。
空空导弹和空地导弹是由飞机或直升机携带和发射的,这就出现了悬挂状态和发射阶段的母机与导弹之间的空气动力干扰问题。助推器与导弹之间也有连接状态和分离阶段的空气动力干扰问题。
非定常效应 战术导弹的机动能力很强,舵偏角、仰角、侧滑角、旋转角速度和平移速度等变化很快,飞行马赫数的变化也很剧烈,因而需要考虑空气动力的非定常效应(见非定常空气动力学)。
减小雷达反射面积 减弱雷达波反射信号对提高导弹生存力有重要作用(见隐身技术),这对于靠隐蔽来突防的战略巡航导弹和海防导弹尤为重要。为了减小雷达反射面积,导弹的外形必然有所改变,这就会影响导弹的气动研究和设计。
有翼导弹空气动力布局 战术导弹的空气动力布局型式较多,诸如正常式、鸭式(稳定操纵翼面位于弹翼之前)、无尾式、三组串翼式和长边条组合式等。导弹没有起飞和着陆滑跑问题,故广泛采用十字形和×形翼面布局,无需滚转便能直接产生侧向气动力。前后两组翼面可以是++、××和+×、×+形的,也可采用一字和十字或×形的组合,有的战术导弹在飞行中全弹不断滚转,也有的仅尾翼段自由滚转。助推器分串联式和并联式两种。串联式布置在导弹尾端,通常只有 1个助推器;并联式布置在导弹侧围,可以只有1个(巡航导弹),也可多至4个。 至于采用空气喷气发动机的有翼导弹,进气口的布局也有多种形式。巡航导弹大都采用类似飞机的空气动力布局,其着眼点不在机动性而在巡航效率。
大迎角空气动力特性 高机动性要求和小展弦比的限制,迫使战术导弹空气动力设计趋向于大迎角,当迎角大于20°时弹翼的绕流是前缘脱体涡流型(见旋涡)。前缘脱体涡不仅能避免因翼面气流分离而出现的失速现象,而且还能提供相当可观的非线性升力(见机翼空气动力特性)。在大迎角下,弹身侧面的分离气流也会形成脱体涡,提供弹身的非线性升力。为了加强脱体涡并使之稳定而不破裂,弹身的横截面形状可以做成扁圆的,或在圆弹身两侧加设小边条。在边条翼和拐折翼上,边条和内翼部分产生脱体涡,外翼部分仍为附着涡,称为混合流型,起延缓失速的作用,但仍保持升力随迎角线性变化的特性。
复杂空气动力干扰问题 在有翼导弹空气动力方面,气动干扰问题显得比孤立部件更为重要。首先是弹身的尺寸很大,所以翼身空气动力干扰很严重,弹翼和弹身的脱体涡使干扰越加复杂。其次是前翼组拖出的前缘脱体涡和后缘涡以及弹身脱体涡等对后翼组的洗流干扰效应。导弹通常采用火箭发动机,喷口处的落压比远比飞机的空气喷气发动机大,因而喷流的自由膨胀率很高,对导弹后段(包括该处的翼面)产生严重的干扰效应。
空空导弹和空地导弹是由飞机或直升机携带和发射的,这就出现了悬挂状态和发射阶段的母机与导弹之间的空气动力干扰问题。助推器与导弹之间也有连接状态和分离阶段的空气动力干扰问题。
非定常效应 战术导弹的机动能力很强,舵偏角、仰角、侧滑角、旋转角速度和平移速度等变化很快,飞行马赫数的变化也很剧烈,因而需要考虑空气动力的非定常效应(见非定常空气动力学)。
减小雷达反射面积 减弱雷达波反射信号对提高导弹生存力有重要作用(见隐身技术),这对于靠隐蔽来突防的战略巡航导弹和海防导弹尤为重要。为了减小雷达反射面积,导弹的外形必然有所改变,这就会影响导弹的气动研究和设计。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条