1) Binary Numeration System
二元命数系统
2) Artificial microsystem
二元生命系统
3) duality algebra system
二元代数系统
4) numeration system
命数系统
5) binary system
二元系统
1.
A rational equation of state of the perturbation type with a repulsion and attraction term has been applied to reproduce critical curves of six different binary systems up to high temperatures and pressures.
利用一个从微扰理论出发得到的含有斥力项和引力项的状态方程计算6个二元系统的临界曲线,这些曲线一直延伸到很高的压力和温度。
6) ice slurry system
二元冰系统
补充资料:简略生命表和完全生命表
简略生命表和完全生命表
简略生命表和完全生命表简略生命表是以大于l多年龄分组的生命表,它是完全生命表的压缩。由于婴儿死亡率较高和老年人数较少,一般将。岁组单列.最后一组为开口组简略生命表的各个栏目〔参阅“生命表”)及计算方法如下: ①年龄。用x表示,有时用年龄组形式写出,依次为。,1~4·5一9,10~14……80~84,85+,有时也把年龄组略写为。,1,5,10~·…80,85‘。这些年龄对不同栏目的意义是不同的。在l二,T二,‘栏中,x意味着确切年龄;在,M二,,q二,,d,,,L二和,a二栏中,二意味着从x岁到二+n岁之间和期间,n是年龄间隔。②分年龄死亡率。用二M二表示,计算公式为: .D,,几夕,~二二行 丹厂工上式中:,几为实际调查或登记的某一年度x岁至x+n岁之间的死亡人数;二几为x到x+n岁之间的年平均人口数,一般用年中人口数代替。 ③分年龄死亡概率。用,q二表示。它表示那些已活到准确年龄x岁的人中,有多大比例将在他们到达x+n岁之前死亡。 _x岁到x+n岁之间死亡人口数 ,外一确切x岁的全部人口数 ,q二与,M二的关系为: n·二M二 ·9!一i+(n一,,二)·,材二 ④尚存人数。用乙表示。它表示在同一时间出生的人群中,能够活到确切年龄x岁的人数。一般生命表中将出生人数定为100 000,即l。二100 000,以后各个年龄的尚存人数可以由下列公式计算出: l;一l。·(1一叮。) 15=11·(1一;ql) lx+,=lx·(l一,叮x)x=5,10,…,85,’二 ⑤死亡人数。用二d二表示。它等于存活到确切年龄x的人数乘以x岁至x+n岁之间的死亡概率。即: ,么=l二·,q二=l,一l二+, ③存活人年数。用。L二表示。它指同时期出生的一批人在确切年龄x岁至另一确切年龄x+。岁之间存活的人年总数。计算公式为:。L二=n·lx+。+。a二·二d二 ⑦x岁以上生存人间年数。它表示已经活到确切年龄二岁的人口l二在今后还可以活多少年。T二一乏L*(i一x,x+n,x+Zn……w) ⑧平均预期寿命。它表明活到x岁的人口中,每人平均还能活多少年。 ⑨死亡人口平均存活年数。用,a二表示。它表示,在x岁至x+,岁之间死亡的人口中,平均每人存活的年数。:a二值的大小,不取决于年龄区间内死亡的绝对水平,而是取决于死亡人口在二至x+n岁之间的年龄分布。如果死亡人口多数集中在年龄区间的前半段,则、<普;如果集中在后半段,则二价号;如果是均匀分布,则二a二一晋,即分年龄死亡人口曲线是线性的· 完全生命表是以1岁为一组编制的生产表。具体编制方法与简略生命表相似,仅把n当作1即可。完全生命表的优点是:详细反映各个年龄的死亡率水平,便于进行逐年逐岁的计算。缺点是:分组太细,容易出现偶然性波动,影响看清主要趋势;表太长,使用不便。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条