说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> v.(使)冷凝,(使)凝结;浓缩,压缩,简缩
1)  condense [英][kən'dens]  [美][kən'dɛns]
v.(使)冷凝,(使)凝结;浓缩,压缩,简缩
2)  condense [英][kən'dens]  [美][kən'dɛns]
v.压缩,浓缩,精简;使冷凝
3)  condensed [英][kən'denst]  [美][kən'dɛnst]
凝结的,冷凝的;浓缩的,缩合的;简明的,压缩的
4)  To make concentrated;boil down.
使…浓缩;压缩
5)  compression-condensation
压缩冷凝
1.
Based on the simulation and optimization of the UniSim Design software,this paper designed a hybrid process combining with the membrane separation technology and the compression-condensation unit to recover light hydrocarbons from GTL vent gas efficiently.
基于此,本文提出膜分离与压缩冷凝耦合的新工艺,并采用UniSimDesign对操作参数进行模拟优化,达到了低能耗高效率回收GTL弛放气中轻烃的目的。
6)  condense [英][kən'dens]  [美][kən'dɛns]
凝结,冷凝,凝汽;聚集,压缩
补充资料:压缩


压缩
contraction

  压缩!阴。.比佣,c~j,压缩算子(contraCtingoperator.①ntractive operator) Hilbert空间H到Hilbert空间刀的一个有界线性映射T,满足升T}热1当H=11,时,个压缩算子T称为宇舍护尊的(con,pletely non一“ni‘a理),指它在任何【补注】算子T的一个约化子空间(redudng sub-印ace)是一个闭子空间K,使得有一个余K‘,即H=K田K,,而K与K‘在T之下都不变,即T(K)C=K,T(K‘)C=K‘.非零的T约化子空间上不是一个酉算子.例如,单侧移位(对比于双侧移位,后者是酉的)是这样的算子联系于H上的每个压缩算子T,有唯一的到T约化子空间中的正交分解H=鱿〕①Hl,使得几二月。了.是酉的,T,=TI。是完全非酉的·了’一T。①不称为T的粤尽兮解(以noniol decomlx巧itlon). H上给定的压缩算子的一个膨胀(d ilation)是一作用于某个更大的比lbert空间K二HI二的有界算子B,使得T“二尸月“,。=1、2、…,这里P是K到H上的正交射影.巧lbert空间H中的每个压缩算子有在某个空间K“H上的酉膨胀U,此外,在如下的意义下它是极小的,K是毛U”H}众。的闭线性张成空间(sz6ke-falvi一Na罗宇浮(s Z6kefalvi一Na留‘heorem))·通过谱理论定义的极小酉膨胀及其函数,允许人们对于压缩箕子构造一种函数演算.这本质上已对开单位圆盘D中的有界解析函数(Ha吻空间H“、)做到了.定义完全非酉压缩算子T属于C。类,如果有一个函数u任H£,。(泪幸0,使得u(T)二0.C。类包含于压缩算子T的C,类之中(指当n,美时,尹一。,厂陀一川.对每个C‘,类的压缩算子,有所谓俘性‘甲攀(m,n,ma‘爪nc‘,on)”了以)(尺},是一个内函数u任H戈,在D中}u(劝}簇1,在D的边界上几乎处处有}州c“)}=l)使得m:.‘川二O并且川:(幻是所有其他的具有同样性质的内函数的因子‘一个压缩算子T的极小函数m:(劝在D中的零l奴集,再与沿弧其上m了(又)可作解析延拓的弧的并在单位圆周中的余集。起,与谱试钧相同.口、类压缩算一子极小函数的概念,允许人们把这类压缩算子的函数演算推广到D中某些亚纯函数. 不仅对于单个的压缩算子也对于离散的压缩算户半群{T”}(n二0,l,一)以及连续的压缩算子半群{j’(5)}(0毛s(刃),己经得到了关于酉膨胀的定理. 如同对于二耗散算子(dissipatlve()详rator),也对压缩算子,构造了一种特征算子值函数的理论及基l此的一个函数模型,由此可研究压缩算一F的构造及谱、极小函数与特征函数之间的关系(见}1]).由〔ayley变换 ,1一二(I+了’)(I丁)l任。;t了)一个压缩算子T与一个极大的增生算子」‘即A使得,A是一个极大的耗散算子)有关.在此基础上.可建扭对称算子成的耗散扩一张B。(相应地,保守算子:斌、的Philips耗散扩张i双,)的理论. 对压缩算子已发展了相似性,拟相似性及单胞性的理论,压缩算子的理论紧密相关于平稳随机过程的预报理论及散射理论.特别地,Lax一Phili详图式(!2])可看作CO。类压缩算子的S泌kefalvi一Nagy一价)ias理论的连续相似.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条