1) cross curve net fly
曲线近网球
2) close set
近网传球。
3) curve approximation
曲线逼近
1.
Method based on subdivision and optimization for curve approximation;
一种基于细分与优化技术的曲线逼近算法
2.
The results show that the method can reflect the hydraulic machinery characteristics,and improve the calculation precision compared with holistic curve approximation method.
针对现有曲线逼近方法的不足,给出了一种基于元胞自动机原理的曲线逼近方法,并对应用这种方法逼近水力机械特性的计算过程进行了研究。
3.
A curve approximation method based on Cellular Automata was produced,and was applied to digital approximation of hydraulic turbine performance data.
给出一种基于元胞自动机的曲线逼近方法,并将这种方法应用于对水轮机的特性数据进行数值逼近。
4) asymptotic curve
渐近曲线
1.
This paper discussed some other characteristics of asymptotic curve through careful analysis, such as the characteristics of asymptotic curve on the surface of translation, the parallel surface and other surface and draw a conclusion that normal line surface of the asympt.
三维欧氏空间中的渐近曲线是局部微分几何中的一种重要的曲线 ,它有许多重要的性质和应用 ,这些在一般的教科书上都有介绍。
2.
In Minkowski space R~(3,1) by employing the method of moving frames to describe construcions and to make local calculations,the equations about asymptotic direction and asymptotic curve of spacelike surface are obtained,and some corresponding results obtained before are extended and improved.
考虑Minkowski空间R3,1中类空曲面的渐近方向与渐近曲线,采用活动标架的方法进行局部计算和整体结构的刻画,得到了渐近方向与渐近曲线的一般方程,推广并改进了已有的结果,并通过具体例子加以阐述。
3.
In this paper,we discuss parallel surfaces of a surface and obtain the sufficient and necessary condition for geodesic (asymptotic curve) of the surface whose corresponding curve is geodesic(asymptotic one) of the parallel surface.
给出平行曲面上对应曲线同时为测地线( 渐近曲线) 的一个充要条件。
5) Approximate curve
近似曲线
6) approximation curve
逼近曲线
补充资料:Hesse曲线(代数曲线的)
Hesse曲线(代数曲线的)
Hessian (algebraic curve)
11油限曲线(代数曲线的)【H台自11(.妙如允.抖e);recc咖,T~aaa,即r药pa一吸ee二o‘二p.助蓝] n次代数曲线(司罗玩水c~)的He丈祀曲线就是其极二次曲线能分裂为两条直线的点的集合,也是第一极曲线的二重点构成的集合.n次非奇异曲线的He丈七曲线是一条次数为3伪一2)、类为3(n一2)(3n一7)的曲线.设介O是这条n次曲线的齐次坐标方程,关丘=刁:f/刁xi刁、,则它的He丈犯曲线的定义方程为 !不:关:五,} }五:关:五31=0. }人,人2人3}特征不等于3时的三次非奇异曲线的H既七曲线与这条曲线交于9个通常拐点.因O.H改e(l 844)而得名. A .E.H困阳。B撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条