1) mock-up-type measurement
模拟型测量
5) measuring model
测量模型
1.
Weld position measuring model based upon weld pool image centroid arithmetic;
熔池图像质心算法的焊缝位置测量模型
2.
Analysis of the measuring model of assembly gaskets of the initiative taper gear axis of the automobile s driving axle;
汽车驱动桥主动锥齿轮总成垫片测量模型分析
3.
A simulation of alternating-current sampling measuring model and DSP programming;
交流采样电参量测量模型仿真与DSP编程
6) measurement model
测量模型
1.
Establishment and verification of measurement model based on neural networks;
基于神经网络的测量模型的建立及检验
2.
By simulating and analyzing the installation errors of the measurement system and the outer parameters of the measurement model,a simplified mathematical model of laser auto-collimation angle measurement is established,which includes the inside and outer parameters.
基于透视投影变换,提出了一种新的激光自准直测角系统建模方法,通过对系统安装误差因素和模型外参数的仿真分析,提出了一种带有内外参数的激光自准直简化测量模型,为激光自准直测角系统建模、标定等问题的解决提供了一个有效的理论依据,具有一定的理论意义和工程实际应用价值。
3.
Combining least square support vector machine with matrix optics,a completely new measurement model of double-four quadrants photoelectric detector in laser tracking optical path is proposed,where the desired parameters of detector can be measured at random detector position.
为了得到最佳的动态跟踪性能,提出了最小二乘向量机与矩阵光学相结合的建模方法,建立了双四象限探测器在激光跟踪光路中的全新测量模型,该模型可实现对探测器参数的自适应测量。
补充资料:模拟测量与数字测量
宏观物理量本质上大都是固定或连续变化的模拟量。迄今为止的测量仪器的示值都模拟着被测量的变化。由于仪器本身的局限性,示值的分辨力只能达到2~3位有效数字,而且模拟式信号(测量数据)在测量过程中易受噪声和干?诺挠跋於渲怠K孀攀旨际醯姆⒄梗饬恳瞧魅战ナ只K贡徊獾哪D饬客ü#浠怀晌至浚倮檬旨际鹾图扑慊删屠刺岣卟饬康木范取⒖煽啃浴⒘榛钚院妥远潭取J质揭瞧饔檬胂允窘峁潦奖悖灰锥链恚局捣直媪纱?6、7位(电压表)乃至 9、10位(频率计数器)有效数字。而且数字信号(测量数据)采用高-低两个电平编码信号,不易受干扰而出错。
数字量是离散量,以一定的跨步(量子值)跃变。每个数字量是一系列阶跃跨步的总和,通常用n比特二进制编码来表示。量化即模-数变换的结果(图中粗线)只能在一些个别点全同于模拟量(细线)。二者之间不可避免的差异,称为量化误差或量化噪声。二进编码时,分辨率(一个量子)为1/(2n-1),8比特的分辨率为±2×10-3,16比特的为±8×10-6,24比特的为±3×10-8。测量的动态范围为n×6.02分贝。
量化过程需要一定时间τ,即模-数变换器的总采样时间。τ值正比于比特数n,反比于时钟(采样节拍)频率。显然,τ应与被测之量v的变化速率(dv/dt)相适应。测量误差为墹v=(墹v/墹t)τ。对于正弦变化量vsinωt,最大误差将为墹v=vωτ或墹v/v=ωτ。把1千赫正弦信号量化到10比特,若要求墹v/v与数字分辨率(1×10-3)相当,则要求τ≤160纳秒。测量速度与精确度之间存在矛盾,精确度要求越高,则总采样时间越长。
为了提高效率,可用较低的重复频率fs<<1/τ来进行采样,并在相继二次采样之间用保持电路来保持采得的值。若要从采样结果复现原来的信号,根据采样定理至少要求fs>2fn,这里fn是信号中所含的最高傅氏频率分量,这样复现的信号将无失真。然而,由于噪声的影响,而且需要滤除采样频率fs,实际上要求fs>5fn。采样保持电路的作用犹如一个低通滤波器,其截频为fs/2,并会产生一个相位延迟,其值为1/(2fs)。模-数变换在高速、高频方面受到限制。
模-数变换的逆过程就是数-模变换,即从数字式编码信号变换为对应的模拟式信号。当被变换的信号变化时,所得模拟信号呈现出量化阶梯。用低通滤波器滤除阶跃所产生的谐波,即得到平滑的模拟信号。若模拟信号中低频傅氏分量的谐波低于高频傅氏分量,则谐波的滤除显然有困难。
除了可以用数-模变换电路作反馈来构成模-数变换器之外,在测量仪器和系统中,数-模变换器常用以产生模拟信号来驱动模拟式终端设备(例如X-Y绘图仪和示波器等)和用于任意波形信号发生器。
数字量是离散量,以一定的跨步(量子值)跃变。每个数字量是一系列阶跃跨步的总和,通常用n比特二进制编码来表示。量化即模-数变换的结果(图中粗线)只能在一些个别点全同于模拟量(细线)。二者之间不可避免的差异,称为量化误差或量化噪声。二进编码时,分辨率(一个量子)为1/(2n-1),8比特的分辨率为±2×10-3,16比特的为±8×10-6,24比特的为±3×10-8。测量的动态范围为n×6.02分贝。
量化过程需要一定时间τ,即模-数变换器的总采样时间。τ值正比于比特数n,反比于时钟(采样节拍)频率。显然,τ应与被测之量v的变化速率(dv/dt)相适应。测量误差为墹v=(墹v/墹t)τ。对于正弦变化量vsinωt,最大误差将为墹v=vωτ或墹v/v=ωτ。把1千赫正弦信号量化到10比特,若要求墹v/v与数字分辨率(1×10-3)相当,则要求τ≤160纳秒。测量速度与精确度之间存在矛盾,精确度要求越高,则总采样时间越长。
为了提高效率,可用较低的重复频率fs<<1/τ来进行采样,并在相继二次采样之间用保持电路来保持采得的值。若要从采样结果复现原来的信号,根据采样定理至少要求fs>2fn,这里fn是信号中所含的最高傅氏频率分量,这样复现的信号将无失真。然而,由于噪声的影响,而且需要滤除采样频率fs,实际上要求fs>5fn。采样保持电路的作用犹如一个低通滤波器,其截频为fs/2,并会产生一个相位延迟,其值为1/(2fs)。模-数变换在高速、高频方面受到限制。
模-数变换的逆过程就是数-模变换,即从数字式编码信号变换为对应的模拟式信号。当被变换的信号变化时,所得模拟信号呈现出量化阶梯。用低通滤波器滤除阶跃所产生的谐波,即得到平滑的模拟信号。若模拟信号中低频傅氏分量的谐波低于高频傅氏分量,则谐波的滤除显然有困难。
除了可以用数-模变换电路作反馈来构成模-数变换器之外,在测量仪器和系统中,数-模变换器常用以产生模拟信号来驱动模拟式终端设备(例如X-Y绘图仪和示波器等)和用于任意波形信号发生器。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条