1) vortex lattice
涡旋点陈
2) rollover
[英]['rəʊləʊvə(r)] [美]['rol'ovɚ]
涡旋
1.
Heat convection characteristic in LNG storage tank when LNG stratification and rollover
LNG储罐分层涡旋事故的热对流特性
2.
Liquefied Natural Gas(LNG) is a kind of high quality and clean energy,but many accidents have taken places since it was widely used,and stratification is the necessary condition for rollover.
液化天然气(LNG)作为一种优质洁净的能源兴起以来,发生过多起储运失稳事故,其中分层是导致涡旋的必要条件。
3.
As the model takes no account of the consequences of boil off rate on density difference and can not interpret the acceleration of the interface's descending before rollover, the paper developed an advanced model which has 4 phases instead of 3 of the old one, and this phase dividing is more reasonable.
介绍了液化天然气涡旋问题和Bates-Morison模型,并针对Bates-Morison模型没有考虑蒸发率对密度差的影响、不能解释涡旋发生前分界面加速下降这一事实等缺陷,提出了改进四阶段涡旋模型。
3) vortex
[英]['vɔ:teks] [美]['vɔrtɛks]
旋涡
1.
The Design Conception and Realization of Pulsatile Ventricular Assist Devices--From Spiral-Vortex Pump to Luo-Ye Pump;
搏动辅助血泵的设计构思与实践——从旋涡泵到罗叶泵
2.
Research on vortexes of cross flow past a horizontal circular cylinder by PIV system;
应用PIV系统研究横流中近壁水平圆柱绕流旋涡特性
3.
When the gas enters the stack by tangent and forms vortex,the negative pressure is formed in center of the flow field.
对新型烟囱技术特征和流场结构的分析认为:由于切向进气,烟气形成旋涡,流动阻力低于普通烟囱,压力损失减少,所以更节能;流场中心形成负压,水、雾等比尘粒小,但比空气大(重)的轻质组分集中在中轴地带随烟气排出,不会腐蚀内壁;因为旋涡流动的存在,提升了烟气排放高度,有更好的环保效果。
4) eddy
[英]['edi] [美]['ɛdɪ]
涡旋
1.
Dynamics of eddy-induced Kuroshio variability in Luzon Strait;
中尺度涡旋影响吕宋海峡黑潮变异的动力机制
2.
The simulated results are as follow:the mixture of gas-liquid two-phase can become more sufficient as adding the jet velocity of gas and the immerged depth of jet pipe,and the eddy forms more easily,the time of obtaining steady flow field is shortened.
模拟结果表明:增大气体喷射速度和喷射管的插入深度都可以使气液两相混合更加充分,流场内较易形成涡旋结构,达到稳定流场的时间也比较短。
3.
An Arctic Ocean eddy in subsurface layer is analyzed in this paper with temperature, salinity and current profile data obtained at an ice camp in the Canada Basin during the second Chinese Arctic Expedition in summer of 2003.
利用2003年7—9月中国第二次北极科学考察期间,在北冰洋加拿大海盆的一个冰站上得到的温度、盐度和流速的连续剖面观测资料,对一个次表层的北冰洋涡旋进行了分析。
5) vortices
[英]['vɔ:təsi:z] [美]['vɔrtə,siz]
旋涡
1.
Main advances of research on vortices in pump sumps;
水泵进水池旋涡研究的主要进展
2.
Based on flow field analysis,it shows that owing to the wakes behind the upstream suction pipe,the downstream flow becomes more turbulent and appears with obvious free-surface vortices and submerged vortices in complicated movement.
本文在玻璃水槽内对不同管间距条件下的吸水管周围进行了大量的PIV流场量测实验,通过流场分析显示,上游吸水管的尾流作用加剧了下游吸水口的水流紊动强度,流场多处出现表面旋涡和水内旋涡,其运动形态复杂多变。
3.
The vortices flow in the blade passages and the influence of the eccentric inlet of the multi-blade centrifugal fan for air-conditioner have been analyzed numerically by using commercial CFD code.
在“前盘”附近,蜗舌下方的叶道中气流几乎停滞,蜗舌下游叶道为回流和尾缘旋涡所充满,至临近蜗壳出口侧,前缘旋涡逐步形成、发展并融合尾缘旋涡,最后衰减、消失。
6) Vortex
[英]['vɔ:teks] [美]['vɔrtɛks]
涡旋
1.
Vortex Coagulation-low Pulsating Sedimentation Process in Low Temperature and Low Turbidity Water;
涡旋混凝低脉动沉淀技术处理低温低浊水
2.
Experimental study on the vortex structure in a rotating paraboloid-shape shallow water with a free surface;
具有自由面的旋转抛物面浅水中涡旋结构的实验研究
补充资料:涡旋
流体团的旋转运动。在自然界中,涡旋有时能明显地看到,例如大气中的龙卷风,桥墩后的旋涡区,划船时产生的旋涡等等。但在更多的情况下,人们不易察觉到涡旋的存在。例如,当物体在真实流体中运动时,在物体表面形成一层很薄的边界层,此薄剪切层中每一点都是涡旋;又如自然界大量存在着的湍流运动充满着不同尺度的涡旋,这些涡旋都是肉眼难以辨认的。
涡旋的产生伴随着机械能的耗损,从而相对物体(飞机、船舶、水轮机、汽轮机)产生流体阻力或降低其机械效率。但是,另一方面,正是依靠涡旋,才使机翼获得举力。在水利工程例如泄水口中,为了保护坝基不被急泻而下的水流冲坏,采用消能设备,人为地制造涡旋以消耗水流的动能。这些就是研究涡旋的实际背景。描述涡旋运动的有以下几个重要物理量:
涡量 设v是速度矢量,则Ω=墷×v定义为涡旋矢量,简称涡量。涡量Ω通过任一截面S的通量称为涡通量。涡量是流体力学中定量描述有旋运动的物理量,它的物理意义可阐明如下:在Μ点邻域内取一与Ω垂直的无限小圆,其半径为a(图1)。写出联系速度环量和涡通量的斯托克斯公式式中L和S分别是小圆的周界和面积。忽略高阶小量并定义平均切向速度和平均角速度塓=尌/a,可得。由此可见,Μ点涡量的大小是流体微团绕该点旋转的平均角速度的两倍,方向与微团的瞬时转动轴线重合。
一般说来,涡量是矢径r和时间t的函数。即Ω=Ω(r,t),它组成一矢量场,称为涡旋场。容易验证涡旋场满足关系式墷·Ω=墷·(墷×v)=0,所以涡旋场是无源管式场。若在整个流动区域中Ω=0,则称此流体运动为无旋运动,否则称为有旋运动。
对粘性系数等于常数的可压缩粘性流体,涡量满足下列方程:
(1)式中F、ρ、p和ν分别为外力、流体的密度、压力和运动粘性系数。Ω/2的物理意义是单位转动惯量上的动量矩。式(1)表明,影响动量矩发生变化的因素有:①外力;②压力梯度;③粘性应力;④流体的压缩或膨胀;⑤涡线的拉伸、压缩和扭曲。若流体是理想、正压(见正压流体)的,且外力有势,则方程(1)变为亥姆霍兹方程:
。
(2)
在不可压缩流体中,若涡旋场Ω给定时(墷·v=0,墷×v=Ω),则速度场可由下式求出:
(3)式中t为时间;ξ、η、ζ为变动点的直角坐标。
涡线 处处与涡旋矢量相切的曲线称为涡线,它由同一时刻不同流体质点组成。涡线上各流体微团绕涡线的切线方向旋转(图2)。确定涡线的微分方程为:
Ω(r,t)×dr=0,
(4)式中Ω(r,t)为涡旋矢量;dr为涡线的弧元素矢量。
涡管 在涡旋场内取一非涡线且不自相交的封闭曲线L,通过它的所有涡线构成一管状曲面,称为涡管。若曲线L无限小,则称为涡管元。如果在涡管周围流体的涡量皆为零,则称此涡管为孤立涡管。涡管具有如下一些性质:①由于涡旋场是无源管式场,即墷·(墷×v)=0,所以涡管中不同横截面上的涡通量保持同一常数值。可以用涡通量来表征涡管内涡旋的强弱,称之为涡管强度。②涡管不能在流体中产生或消失,它只能在流体中自行封闭,形成涡环,或将其头尾搭在固壁或自由表面上,或者延伸至无穷远处(图 3)。烟圈和水、陆龙卷风是涡管封闭以及涡管延伸至边界或无穷远处的实例。③如果流体是理想、正压的,且外力有势,则涡管及其强度在运动过程中保持不变,即涡管永远由相同的流体质点组成,且其强度不随时间改变。
涡旋的产生伴随着机械能的耗损,从而相对物体(飞机、船舶、水轮机、汽轮机)产生流体阻力或降低其机械效率。但是,另一方面,正是依靠涡旋,才使机翼获得举力。在水利工程例如泄水口中,为了保护坝基不被急泻而下的水流冲坏,采用消能设备,人为地制造涡旋以消耗水流的动能。这些就是研究涡旋的实际背景。描述涡旋运动的有以下几个重要物理量:
涡量 设v是速度矢量,则Ω=墷×v定义为涡旋矢量,简称涡量。涡量Ω通过任一截面S的通量称为涡通量。涡量是流体力学中定量描述有旋运动的物理量,它的物理意义可阐明如下:在Μ点邻域内取一与Ω垂直的无限小圆,其半径为a(图1)。写出联系速度环量和涡通量的斯托克斯公式式中L和S分别是小圆的周界和面积。忽略高阶小量并定义平均切向速度和平均角速度塓=尌/a,可得。由此可见,Μ点涡量的大小是流体微团绕该点旋转的平均角速度的两倍,方向与微团的瞬时转动轴线重合。
一般说来,涡量是矢径r和时间t的函数。即Ω=Ω(r,t),它组成一矢量场,称为涡旋场。容易验证涡旋场满足关系式墷·Ω=墷·(墷×v)=0,所以涡旋场是无源管式场。若在整个流动区域中Ω=0,则称此流体运动为无旋运动,否则称为有旋运动。
对粘性系数等于常数的可压缩粘性流体,涡量满足下列方程:
(1)式中F、ρ、p和ν分别为外力、流体的密度、压力和运动粘性系数。Ω/2的物理意义是单位转动惯量上的动量矩。式(1)表明,影响动量矩发生变化的因素有:①外力;②压力梯度;③粘性应力;④流体的压缩或膨胀;⑤涡线的拉伸、压缩和扭曲。若流体是理想、正压(见正压流体)的,且外力有势,则方程(1)变为亥姆霍兹方程:
。
(2)
在不可压缩流体中,若涡旋场Ω给定时(墷·v=0,墷×v=Ω),则速度场可由下式求出:
(3)式中t为时间;ξ、η、ζ为变动点的直角坐标。
涡线 处处与涡旋矢量相切的曲线称为涡线,它由同一时刻不同流体质点组成。涡线上各流体微团绕涡线的切线方向旋转(图2)。确定涡线的微分方程为:
Ω(r,t)×dr=0,
(4)式中Ω(r,t)为涡旋矢量;dr为涡线的弧元素矢量。
涡管 在涡旋场内取一非涡线且不自相交的封闭曲线L,通过它的所有涡线构成一管状曲面,称为涡管。若曲线L无限小,则称为涡管元。如果在涡管周围流体的涡量皆为零,则称此涡管为孤立涡管。涡管具有如下一些性质:①由于涡旋场是无源管式场,即墷·(墷×v)=0,所以涡管中不同横截面上的涡通量保持同一常数值。可以用涡通量来表征涡管内涡旋的强弱,称之为涡管强度。②涡管不能在流体中产生或消失,它只能在流体中自行封闭,形成涡环,或将其头尾搭在固壁或自由表面上,或者延伸至无穷远处(图 3)。烟圈和水、陆龙卷风是涡管封闭以及涡管延伸至边界或无穷远处的实例。③如果流体是理想、正压的,且外力有势,则涡管及其强度在运动过程中保持不变,即涡管永远由相同的流体质点组成,且其强度不随时间改变。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条