1) optical oode reading wand
光碥读数杆
2) optical code reading wand
光码读数杆
3) reading wand
读数杆
4) encoded multiplex spectrometer
编碥多路分光计
5) light reading
读数光路
1.
In view of the light reading of DJ6-tpye optical transist, based on practical work, this article systematically analyses the reasons of the optical parallax and aberration caused by this kind of optical instruments, and it also shows us some methods to deal with them according to the principles of geometrical optics.
针对DJ6型光学经纬仪的读数光路,从几何光学原理出发,结合工作实际,系统地分析了该类仪器视差和行差产生的原因,并提出了相应的处理方法。
6) Grating reader
光栅读数
补充资料:半导体集成光路
将光学器件组合在一块半导体基片上形成的光学系统。集成光路是在集成电路的启示下,试图把传统的光学元件、器件组合在一块固体上,以使光学系统缩小体积、减轻重量、增强抗振能力、减小功耗、提高可靠性、增加带宽和降低噪声。集成光路采用的材料有玻璃、电介质和半导体三大类。只有Ⅲ-Ⅴ族化合物半导体材料既可制成无源器件(如光波导、耦合器等),又可制成有源器件(如做光源用的发光二极管、激光器和调制器等),还有与光功能器件相配置的驱动和控制电子器件,因此可以把全部元件、器件都集成到一块半导体基片或衬底上,这就使单片集成变为可能。这种思想是1972年开始形成的。由于不可避免地要有电子器件和光功能器件相配,早期的全光学集成的概念就发展成为"集成光电子回路"(IOEC),也有人称为"光电子集成回路"(OEIC)。70年代初期,异质结激光器的寿命问题获得突破;低损耗石英光纤研制成功,使光纤通信变成现实。这些进展极大地推动了单片集成光路的研究。
半导体集成光路设计思想 在光学器件和电子器件的集成中,首先考虑这两类器件的相容性。半导体激光器的阈值电流Ith一般在15~50毫安范围,场效应晶体管(FET)通常在饱和区工作,所以必须妥善设计,使FET的饱和电流接近激光器(LD)的阈值电流。此外,还要考虑不同类型的器件偏置的极性和大小的差异等。
单片集成光路多采用GaAs/AlGaAs和InP/InGaAsP异质结构,前者波长在0.7微米至0.9微米间,后者在1.3微米至 1.6微米间。为了获得良好的电学性质、光学性质和可靠性等,异质结构晶格常数必须与半导体及与之相接的金属和电介质的物理常数(如膨胀系数、折射率等)相匹配。
为实现高速调制运转,光路中寄生阻抗和电容必须减至最低。为实现高的集成密度,必须降低功耗,解决热消散问题。
半导体集成光路材料 Ⅲ-Ⅴ族化合物半导体是最适于光通信器件的集成光学材料。例如,GaAs/AlGaAs体系是很好的激光器材料,同时也适于制造探测器。此外,GaAs有相当高的电子迁移率,因而是制造场效应晶体管的优良材料。采用GaAs/AlGaAs系统材料的激光器与场效应晶体管、激光器与双极晶体管、微解理激光器与监测器等单片集成器件以及由探测器、场效应晶体管和激光器组成的单片集成光学中继器等已经研制成功。InGaAsP/InP体系是另一种有前途的激光器材料,用这种材料可以制成波长落在石英光纤最低损耗窗口的激光器。人们已制成激光器和金属绝缘栅半导体场效应晶体管、激光器与分布布喇格反射器波导、发光二极管和透镜等单片集成器件以及集成标准具干涉激光器、集成分布反馈激光器等。
典型结构 单片光电子集成器件的典型结构有半导体激光器、PIN-FET光接收器、集成中继器、分布反馈激光器、波导开关阵列等。
半导体激光器 为了便于集成并保证元件、器件间的电学隔离,最合理的设计是采用半绝缘体衬底并且电极处于上面的"正装"组合。图1是在半绝缘衬底上制的隐埋异质结(BH)激光器的示意图。
PIN-FET光接收器 图2为InGaAsPIN,光电二极管(见半导体光电二极管)和 FET的集成接收器及其等效电路。这是光接收机的基本组合。与PIN/FET的混合集成相比,单片集成器件寄生参数小、可靠性高、体积小。
单片集成中继器 图3中的单片集成中继器含有3个MESFET和1个LD。晶体管Q1是电源,Q2是探测器,Q3是LD的驱动器。当没有光信号时,接近USS的一个负电压加到Q3上并使Q2截止,通过LD的电流只是外加偏压引起的;当光照到探测器上,在未被栅金属覆盖的构道上产生光生载流子,从而引起探测器I-U特性的变化。调整栅压USS可以使Q2导通,并把LD驱动到阈值之上,因而产生光输出。可以看出,这种中继器实际上是把输入探测器的光变成电信号,然后当探测器输出这个电信号时,使原来偏置在阈值以下的LD转到阈值之上工作,重新获得激光输出。
分布反馈激光器和分布布喇格反射激光器 在70年代中发展起来的分布反馈激光器 (DFB)和分布布喇格反射激光器(DBR)具有选频作用,已制成可以在高速调制下稳定地进行动态单模工作的集成结构,如隐埋异质结集成孪波导分布布喇格激光器(BH-ITG-DBR),隐埋异质结对接内建分布布喇格反射波导激光器(BH-BJB-DBR)等(见半导体分布反馈激光器)。BH-BJB-DBR激光器已在1.5~1.6微米实现单模操作。
激光器阵列 可用于光唱盘、光信息处理等的激光器阵列。并列耦合多条激光器可以输出较大功率的相干光,并且光束较窄。在含有6个分布反馈激光器的阵列中,适当选择每个激光器的光栅周期使其输出波长相差20埃,从而可以单个输出波导获得不同波长分别调制的激光束。
波导开关阵列 光纤通信系统必须配备快速的和有效的波导开关,以提供振幅调制和用不同波导发送光信号。电光方向耦合(EDC)开关是适合这两方面要求的功能元件。以GaAs为衬底材料的 EDC开关,有金属间隙光带、沟道停止条型波导、MOS脊型波导和肖特基脊型波导等种结构。前两种结构效率有限;MOS结构截止频率较低;肖特基脊型波导使用"分级"、"分档"结构,因而提供了大的功率分离因子,工作时所需的外加电压也较低。GaAs 肋型2×4开关阵列和 GaAs肖特基肋型2×2天关阵列都是波导开关阵列的例子。GaAs单块集成光干涉仪的输出部分由三个波导耦合器组成,二个有源臂是由单模P+N-N+平板耦合脊型波导组成。当其中一个臂上加有22伏电压时,从中心波导输出信号的消光比达14.5分贝。这种器件在5~10吉赫下仍能有较大的调制深度。
半导体集成光学的应用 尽管各种集成光学器件大多数还只是一种演示器而未达到实用化,但由于半导体集成光学器件与分立器件系统或老式光学系统相比有明显的优点而日益为人们所重视。例如,应用集成光学技术制成的耦合腔激光器(包括解理耦合腔、短耦合腔、分别泵浦集成标准具干涉激光器)在实现单纵模和波长调谐方面都取得明显进展。在单片集成方面已制成初级集成化的光电子发射机(半导体激光器与驱动电路、调制电路及监测器等的集成)和集成化的接收机(包括探测器、整形电路、放大器等)。半导体集成光学的发展势必促进光纤通信、测距、印刷、光盘存储、信号处理技术的发展。
发展趋势 Ⅲ-Ⅴ族化合物半导体遇到的困难和发展的途径是:
① 适于集成光路的激光器的耗散功率应尽可能小,为了集成,器件必须正装,通常对单个激光器的倒装办法不再适用。这就要求激光器本身有更低的阈值电流,为此发展了横向结条型激光器(TJS)、短腔(腔长L<100微米)激光器、隐埋激光器等。除功耗要求之外,还希望集成激光器能在较大的I/Ith下工作。
② 异质光波导损耗较大,通常为1分贝/毫米,约比一般介质光波导损耗大10倍以上,因而严重影响单片集成光路中各光学元件的联接。为了解决这个困难,人们开始采用沉积-旋转技术,在Ⅲ-Ⅴ族化合物半导体衬底上形成介质光波导,使波导损耗降到0.1分贝/毫米左右。
③ 光功能器件的很重要的一个功能是频率调制。GaAs、InP等Ⅲ-Ⅴ族化合物半导体的电光系数比铌酸锂等小很多,制作调制器并不理想。人们用C3激光器和一个放大调制器集成,在920兆比特/秒下实现单纵模工作,为实现光源、调制器的集成开辟了新的途径。
④ 集成光路的工艺精度和工艺复杂性,以及对原材料质量的要求,比大规模集成电路的要求还高。为了适应单片集成光路发展的需要,发展了许多技术,如在半绝缘衬底制造方面的液封直拉法(LEC方法),超薄外延层制备方面的分子束外延(MBE)、金属有机化合物汽相沉积(MO-CVD),以及微细加工方面的离子注入、电子束曝光等技术。
光学逻辑元件发展迅速。例如,用C3激光器实现了"与"、"或"、"异或"等功能。光学双稳态的研究也引起重视。这些研究工作将会促进全光计算机的发展。
参考书目
田炳耕著,裘小农译:《集成光学和光学波导中新的波现象》,人民邮电出版社,北京,1981。(P.K. Tien,Integrated Optics and New Wave Phenomena in Optical Waveguides.Rev.Mod.Phys.49,361,1977.
半导体集成光路设计思想 在光学器件和电子器件的集成中,首先考虑这两类器件的相容性。半导体激光器的阈值电流Ith一般在15~50毫安范围,场效应晶体管(FET)通常在饱和区工作,所以必须妥善设计,使FET的饱和电流接近激光器(LD)的阈值电流。此外,还要考虑不同类型的器件偏置的极性和大小的差异等。
单片集成光路多采用GaAs/AlGaAs和InP/InGaAsP异质结构,前者波长在0.7微米至0.9微米间,后者在1.3微米至 1.6微米间。为了获得良好的电学性质、光学性质和可靠性等,异质结构晶格常数必须与半导体及与之相接的金属和电介质的物理常数(如膨胀系数、折射率等)相匹配。
为实现高速调制运转,光路中寄生阻抗和电容必须减至最低。为实现高的集成密度,必须降低功耗,解决热消散问题。
半导体集成光路材料 Ⅲ-Ⅴ族化合物半导体是最适于光通信器件的集成光学材料。例如,GaAs/AlGaAs体系是很好的激光器材料,同时也适于制造探测器。此外,GaAs有相当高的电子迁移率,因而是制造场效应晶体管的优良材料。采用GaAs/AlGaAs系统材料的激光器与场效应晶体管、激光器与双极晶体管、微解理激光器与监测器等单片集成器件以及由探测器、场效应晶体管和激光器组成的单片集成光学中继器等已经研制成功。InGaAsP/InP体系是另一种有前途的激光器材料,用这种材料可以制成波长落在石英光纤最低损耗窗口的激光器。人们已制成激光器和金属绝缘栅半导体场效应晶体管、激光器与分布布喇格反射器波导、发光二极管和透镜等单片集成器件以及集成标准具干涉激光器、集成分布反馈激光器等。
典型结构 单片光电子集成器件的典型结构有半导体激光器、PIN-FET光接收器、集成中继器、分布反馈激光器、波导开关阵列等。
半导体激光器 为了便于集成并保证元件、器件间的电学隔离,最合理的设计是采用半绝缘体衬底并且电极处于上面的"正装"组合。图1是在半绝缘衬底上制的隐埋异质结(BH)激光器的示意图。
PIN-FET光接收器 图2为InGaAsPIN,光电二极管(见半导体光电二极管)和 FET的集成接收器及其等效电路。这是光接收机的基本组合。与PIN/FET的混合集成相比,单片集成器件寄生参数小、可靠性高、体积小。
单片集成中继器 图3中的单片集成中继器含有3个MESFET和1个LD。晶体管Q1是电源,Q2是探测器,Q3是LD的驱动器。当没有光信号时,接近USS的一个负电压加到Q3上并使Q2截止,通过LD的电流只是外加偏压引起的;当光照到探测器上,在未被栅金属覆盖的构道上产生光生载流子,从而引起探测器I-U特性的变化。调整栅压USS可以使Q2导通,并把LD驱动到阈值之上,因而产生光输出。可以看出,这种中继器实际上是把输入探测器的光变成电信号,然后当探测器输出这个电信号时,使原来偏置在阈值以下的LD转到阈值之上工作,重新获得激光输出。
分布反馈激光器和分布布喇格反射激光器 在70年代中发展起来的分布反馈激光器 (DFB)和分布布喇格反射激光器(DBR)具有选频作用,已制成可以在高速调制下稳定地进行动态单模工作的集成结构,如隐埋异质结集成孪波导分布布喇格激光器(BH-ITG-DBR),隐埋异质结对接内建分布布喇格反射波导激光器(BH-BJB-DBR)等(见半导体分布反馈激光器)。BH-BJB-DBR激光器已在1.5~1.6微米实现单模操作。
激光器阵列 可用于光唱盘、光信息处理等的激光器阵列。并列耦合多条激光器可以输出较大功率的相干光,并且光束较窄。在含有6个分布反馈激光器的阵列中,适当选择每个激光器的光栅周期使其输出波长相差20埃,从而可以单个输出波导获得不同波长分别调制的激光束。
波导开关阵列 光纤通信系统必须配备快速的和有效的波导开关,以提供振幅调制和用不同波导发送光信号。电光方向耦合(EDC)开关是适合这两方面要求的功能元件。以GaAs为衬底材料的 EDC开关,有金属间隙光带、沟道停止条型波导、MOS脊型波导和肖特基脊型波导等种结构。前两种结构效率有限;MOS结构截止频率较低;肖特基脊型波导使用"分级"、"分档"结构,因而提供了大的功率分离因子,工作时所需的外加电压也较低。GaAs 肋型2×4开关阵列和 GaAs肖特基肋型2×2天关阵列都是波导开关阵列的例子。GaAs单块集成光干涉仪的输出部分由三个波导耦合器组成,二个有源臂是由单模P+N-N+平板耦合脊型波导组成。当其中一个臂上加有22伏电压时,从中心波导输出信号的消光比达14.5分贝。这种器件在5~10吉赫下仍能有较大的调制深度。
半导体集成光学的应用 尽管各种集成光学器件大多数还只是一种演示器而未达到实用化,但由于半导体集成光学器件与分立器件系统或老式光学系统相比有明显的优点而日益为人们所重视。例如,应用集成光学技术制成的耦合腔激光器(包括解理耦合腔、短耦合腔、分别泵浦集成标准具干涉激光器)在实现单纵模和波长调谐方面都取得明显进展。在单片集成方面已制成初级集成化的光电子发射机(半导体激光器与驱动电路、调制电路及监测器等的集成)和集成化的接收机(包括探测器、整形电路、放大器等)。半导体集成光学的发展势必促进光纤通信、测距、印刷、光盘存储、信号处理技术的发展。
发展趋势 Ⅲ-Ⅴ族化合物半导体遇到的困难和发展的途径是:
① 适于集成光路的激光器的耗散功率应尽可能小,为了集成,器件必须正装,通常对单个激光器的倒装办法不再适用。这就要求激光器本身有更低的阈值电流,为此发展了横向结条型激光器(TJS)、短腔(腔长L<100微米)激光器、隐埋激光器等。除功耗要求之外,还希望集成激光器能在较大的I/Ith下工作。
② 异质光波导损耗较大,通常为1分贝/毫米,约比一般介质光波导损耗大10倍以上,因而严重影响单片集成光路中各光学元件的联接。为了解决这个困难,人们开始采用沉积-旋转技术,在Ⅲ-Ⅴ族化合物半导体衬底上形成介质光波导,使波导损耗降到0.1分贝/毫米左右。
③ 光功能器件的很重要的一个功能是频率调制。GaAs、InP等Ⅲ-Ⅴ族化合物半导体的电光系数比铌酸锂等小很多,制作调制器并不理想。人们用C3激光器和一个放大调制器集成,在920兆比特/秒下实现单纵模工作,为实现光源、调制器的集成开辟了新的途径。
④ 集成光路的工艺精度和工艺复杂性,以及对原材料质量的要求,比大规模集成电路的要求还高。为了适应单片集成光路发展的需要,发展了许多技术,如在半绝缘衬底制造方面的液封直拉法(LEC方法),超薄外延层制备方面的分子束外延(MBE)、金属有机化合物汽相沉积(MO-CVD),以及微细加工方面的离子注入、电子束曝光等技术。
光学逻辑元件发展迅速。例如,用C3激光器实现了"与"、"或"、"异或"等功能。光学双稳态的研究也引起重视。这些研究工作将会促进全光计算机的发展。
参考书目
田炳耕著,裘小农译:《集成光学和光学波导中新的波现象》,人民邮电出版社,北京,1981。(P.K. Tien,Integrated Optics and New Wave Phenomena in Optical Waveguides.Rev.Mod.Phys.49,361,1977.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条