1) frequency-dependent delectric constant
频率相关介电常数
2) high-frequency dielectric constant
高频介电常数
1.
Using classical vibrator theory and by means of the n-k egg-shape curve and n-k half-circle graph of reflectivity for vibrators, the influence of high-frequency dielectric constant on crystal reflection spectrum is analyzed.
运用经典振子理论,借助振子n-k蛋圆曲线及反射率半圆图,分析了高频介电常数对晶体反射光谱的影响,指出当振子强度和阻尼常数一定时,高频介电常数低的材料有利于在反射光谱中形成宽带低反射率区,可用于红外吸波。
3) specific inductive capacity
电容率,介电常数
4) dielectric constant
介电常数,电容率
5) dielectric capacitance
介电常数;电容率
6) relative permittivity
相对电容率,相对介电常数
补充资料:复介电常数
复介电常数
complex dielectric constant
倒£“ED(t)=“(田)及cos田t+£,,(留)凡sin山t(1)相角子,即式中:/(。卜会cos“(。),:。(。卜会sin“(。)(2)tg占=损耗电流11_f充电电流Ic一万 (7)即在交变电场下,D(t)和E(t)的关系要用两个物理量口和了来表征。上式中,相位占和了、了都是频率的函数,且与温度和电介质结构密切相关。 D(t)可分解为两个分量:一个与E同相位,另一与E有90。相位差。如将上述关系用复数表示,且令君*=Eoe,“‘,D*=Doej(“一泞),则刀‘与E*的关系可表示为 D*(t)=‘*(臼)E*(t)(3)在式中引入复数介电常数扩=了一j已,则 二(田卜;斜一会一‘一‘(田卜j一‘。,“, 静态时,。=0、占=0。即£,,=O,式(3)可表示为D=二,(0)E,其中£,(O)即为静态介电常数£s。可见,g(。)是静态介电常数在交变场下的推广,e’(。)称为频率依赖的介电常数。 动态时,在真空电容器中,电流虽然超前电场二/2,但由于占=0,而不产生损耗;故在具有介电常数的电容器中,单位时间、单位体积中损耗的能量评,可由E及与E同相的电流分量。扩E的乘积表示,即]。“E图1电介质中交流电场E 与电流I的矢量图部和虚部表示,而弛豫时间为 根据复介电常数定 义,由式(4)并经简化 处理后可得 £*(臼)=£‘(臼)一j£“ 6二一己。/。、 t田】=E。十二~一,犷一一~气己少 1一」田T 上式称为德拜公式,用 来表征复介电常数的频 率特性。如将其分成实:时,则得已=昆+65一三.l+田2r2(£。一氛)田T1十田2丁2 已,,tg口一=万,二 Q(‘s一几)田丁£s+氛田2丁2 (9)(10)(11)W一晋DOEOS‘n“一晋“‘“一‘E’“‘g“(5,合(£·l一(去‘一‘。210 10()四T由于了的变化不大,因而能量损耗与复介电常数的虚部已成正比。式(4)中了(动称为介质的损耗因子。式(5)中占称为介质损耗角,tg沙称为介质损耗角正切或介电耗散因子。 在交流电路中,若置介质于平板电容器中,并在两极间外加交流电压V V=Voej“。.,_L一~~,卜。尸。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条