1) Two Hybrid Protein Protein Interactions
双杂交的蛋白质蛋白质相互作用
2) Protein-protein interaction
蛋白质-蛋白质相互作用
1.
Research progress in protein-protein interactions and their inhibitors;
蛋白质-蛋白质相互作用及其抑制剂研究进展
2.
Elucidation of liver protein-protein interaction patterns will provide an important basic data set in the functional analysis of liver proteome, providing insights into individual protein functions, pathways, molecular machines, functional protein modules and evolution.
蛋白质-蛋白质相互作用是一切生命活动的基础,研究肝脏蛋白质在相互作用中形成的复杂网络是全面认识肝脏生理功能、理解其分子调控机理的重要手段。
3.
7 kinds of data types which are called evidences with significant biological senses were selected,these heterogeneous data were integrated to systematically analyze protein-protein interactions(PPI) and protein-DNA interactions(PDI).
选取了7类具有显著生物学含义的数据类型(证据),采用数据整合的方法对蛋白质-蛋白质相互作用(PPI)和蛋白质-DNA相互作用加以系统性分析,并利用支持向量机(SVM)预测大鼠全基因组的PPI和PDI。
3) protein-protein interactions
蛋白质-蛋白质相互作用
1.
The bioluminescence resonance energy transfer(BRET) is a new technique for detecting protein-protein interactions,which is developed in the recent years.
生物发光共振能量转移(BRET)技术是近10年来出现的一种新的检测蛋白质-蛋白质相互作用的技术。
5) protein interaction
蛋白质相互作用
1.
The Complex Network of Protein-Protein Interaction of Parkinson s Disease Associated Proteins;
帕金森病相关蛋白质相互作用网络的构建
2.
Analysis of protein interaction network and function of Staphylococcus aureus
金黄色葡萄球菌蛋白质相互作用网络及功能
3.
Proteins potentially associated with the pathology of Alzheimer s disease were gathered into our database,and were then mapped into a protein interaction network.
依据无标度网络的相关理论,提出一种预测蛋白质-蛋白质相互作用的算法,并预测潜在的作用位点。
6) protein-protein interaction
蛋白质相互作用
1.
Chemical cross linking technology used in the study of protein-protein interaction;
化学交联技术在蛋白质相互作用研究中的应用
2.
The advance in research methods for large-scale protein-protein interactions;
大规模蛋白质相互作用研究方法进展
3.
Advances in algorithms applied on various protein-protein interaction data sources integration;
异源蛋白质相互作用数据整合算法的进展
补充资料:运动与蛋白质代谢
运动要消耗能量,但是,运动时蛋白质的氧化和氮的排泄并不显著高于安静状态。即使在某些条件下,含氮废物的排泄增多,但供能所占的比例也较少。蛋白质分解代谢增强,主要在于对整体代谢起调节作用。所以,当机体的糖和脂肪充足时,蛋白质通常不是肌肉活动的主要能量来源。
运动对血浆蛋白有一定影响。耐力训练者血浆总蛋白、白蛋白和球蛋白总量高于同年龄的非运动员。运动时,血浆蛋白浓度通常增加,其中主要是白蛋白增多,其次是某些球蛋白,但血浆蛋白总量通常增加或变化不明显,在某些条件下也可能有少量减少。血浆蛋白质是维持血浆容量的重要因素。血浆蛋白的这些代谢特点,对保证运动时的血量供应有着重要的意义。
血浆含有多种氨基酸。其中,丙氨酸在运动时的变化最大,显著高于其他氨基酸的变化水平。丙氨酸从肌肉释出,被肝脏摄取。在肌肉中,丙氨酸可由丙酮酸氨基化生成,随血行至肝脏脱去氨基后,异生为葡萄糖。生成的葡萄糖随血行至肌肉分解为丙酮酸,部分丙酮酸经转氨基作用再生成丙氨酸。如此反复,称为葡萄糖-丙氨酸循环。肌肉中丙酮酸氨基化所需的氨基,主要来自缬氨酸、亮氨酸和异亮氨酸。葡萄糖-丙氨酸循环,不仅运转了丙酮酸以重新合成为糖,为肌肉提供了能源,而且还运转了氨基,对免于血氨升高也有一定意义。
运动对尿素的产生有一定影响。短时间的剧烈运动,能使血清尿素浓度增加。强度大而持续时间长的运动,尿素增高更多,且在次日还不能恢复到运动前水平。在训练期间,如果血清尿素持续升高,则被认为是身体对运动量或环境不适应的表现,所以,人们把血清尿素作为评定运动员身体机能状态的重要指标。
运动时,血氨浓度通常增加,运动强度越大,增加越多。增加的血氨主要来自肌肉,或者来自氨基酸的脱氨基,或者来自嘌呤核苷酸循环,其机理和意义还有待研究。
运动对肌酐的排泄有显著影响。运动时,尿肌酐的排泄率和廓清率都比运动前低,血肌酐浓度增高,但运动时肌酐的生成率并不高于运动前水平。此外,运动员的尿肌酐系数高于同年龄的非运动员。在短跑和体操项目中,优秀运动员的尿肌酐系数最高。这表明肌酐的产生相对稳定,尿肌酐系数与肌肉的工作能力有密切关系。
运动对血浆蛋白有一定影响。耐力训练者血浆总蛋白、白蛋白和球蛋白总量高于同年龄的非运动员。运动时,血浆蛋白浓度通常增加,其中主要是白蛋白增多,其次是某些球蛋白,但血浆蛋白总量通常增加或变化不明显,在某些条件下也可能有少量减少。血浆蛋白质是维持血浆容量的重要因素。血浆蛋白的这些代谢特点,对保证运动时的血量供应有着重要的意义。
血浆含有多种氨基酸。其中,丙氨酸在运动时的变化最大,显著高于其他氨基酸的变化水平。丙氨酸从肌肉释出,被肝脏摄取。在肌肉中,丙氨酸可由丙酮酸氨基化生成,随血行至肝脏脱去氨基后,异生为葡萄糖。生成的葡萄糖随血行至肌肉分解为丙酮酸,部分丙酮酸经转氨基作用再生成丙氨酸。如此反复,称为葡萄糖-丙氨酸循环。肌肉中丙酮酸氨基化所需的氨基,主要来自缬氨酸、亮氨酸和异亮氨酸。葡萄糖-丙氨酸循环,不仅运转了丙酮酸以重新合成为糖,为肌肉提供了能源,而且还运转了氨基,对免于血氨升高也有一定意义。
运动对尿素的产生有一定影响。短时间的剧烈运动,能使血清尿素浓度增加。强度大而持续时间长的运动,尿素增高更多,且在次日还不能恢复到运动前水平。在训练期间,如果血清尿素持续升高,则被认为是身体对运动量或环境不适应的表现,所以,人们把血清尿素作为评定运动员身体机能状态的重要指标。
运动时,血氨浓度通常增加,运动强度越大,增加越多。增加的血氨主要来自肌肉,或者来自氨基酸的脱氨基,或者来自嘌呤核苷酸循环,其机理和意义还有待研究。
运动对肌酐的排泄有显著影响。运动时,尿肌酐的排泄率和廓清率都比运动前低,血肌酐浓度增高,但运动时肌酐的生成率并不高于运动前水平。此外,运动员的尿肌酐系数高于同年龄的非运动员。在短跑和体操项目中,优秀运动员的尿肌酐系数最高。这表明肌酐的产生相对稳定,尿肌酐系数与肌肉的工作能力有密切关系。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条