1) AC single speed
交流单速
2) ac single-speed driving system
交流单速电力拖动系统
3) single-phase AC electromotor velocity modulation
单相交流电机调速
4) AC speed regulating
交流调速
1.
An improved control algorithm is introduced for an indirect vector control AC speed regulating system.
针对滑差频率型矢量控制交流调速系统 ,基于模糊推理在线调整滑模控制器输出中的前馈系数 ,提出一种改进控制算法 。
2.
According to the principle of direct torque control,the character of DSP and its application in frequency converting and speed regulating system of asynchronous motor are introduced,the design scheme based on DSP for the AC speed regulating system without speed sensor is presented in this paper.
根据直接转矩控制原理 ,介绍了DSP的结构特点及其在异步电机变频调速系统中的应用 ,提出了以DSP为核心的无速度传感器交流调速系统的设计方案。
5) AC speed regulation
交流调速
1.
According to the electromechanical energy conversion principle,the essence of AC speed regulation is analyzed thoroughly in this paper;moreover,a creative conclusion that the essence of AC speed regulation lies in the power control is drawn.
根据电动机最基本的电——机能量转换原理,对交流调速的实质进行了新的分析,并得出交流调速的实质是功率控制的结论。
2.
The function and design of a monitoring system for the digital-analog control AC speed regulation experiment device are described.
介绍了数模混合控制交流变频调速实验装置监控系统的功能及设计过程,根据交流调速实验系统的操作要求,设计出相应的功能模块和操作界面,便于在PC机的操作界面上完成相关的实验内容。
3.
Based on the analysis of several normal compensation methods,a simple practical and effective compensation scheme is proposed,and this scheme has been demonstrated in an actual AC speed regulation system.
在剖析几种常用补偿方法的基础上,提出了一种简便、实用、有效的补偿方案,并在实际交流调速系统上验证了其可行性,最后给出了实验结果。
6) AC variable speed
交流调速
1.
Application of modern AC variable speed in marine electric propulsion;
现代交流调速技术在船舶电力推进中的应用
2.
According to the different controlled objects,modern AC variable speed system can be sor.
船舶电力推进系统的核心是主推进电动机的调速控制系统,根据被控对象的不同,现代交流调速系统可分为异步电动机调速系统和同步电动机调速系统。
3.
A new type of AC variable speed system——the speed feedback system without speed transducer is discussed.
讨论了一种新型交流调速系统———无速度传感器的速度闭环控制系统利用测量感应电动机的定子电压、电流的值,通过运算得出定子磁通ψ1和转矩Te,然后计算出转差ω2,以代替转差ωx的测
补充资料:交流电力拖动调速技术
通过改变交流电动机的有关电气参数,使交流电动机在不同转速下运行的技术。简称交流调速。由于直流电动机价格高,维修困难,而交流电动机结构简单,运行可靠,几乎不需维修等优点,因而在各工矿企业中都希望采用交流电动机作为拖动电机。
根据交流异步电动机的转速表达式交流电力拖动调速技术有交流调压调速、转子串电阻调速、交流串级调速、变级调速和变频调速5种。
交流调压调速 改变定子电源电压的调速方法。交流异步电动机的电磁转矩M与定子电压U1成平方正比关系。调节定子电压使电磁转矩产生变化,在一定的负载转矩下可使电动机转速改变。根据电机设计,一般都采用低于铭牌规定的定子额定电压进行调压调速。交流调压一般采用定子绕组串接可调阻抗、串接自耦变压器和串接晶闸管调压器的方法。交流调压调速方法调速范围不大,调速引起的损耗随转速的降低而增大。适用于调速要求不高、不经常在低速下运行的负载。
转子串电阻调速 改变转子绕组电路外串电阻的调速方法。这种调速方法只适用于绕线式交流异步电动机。电动机同步转速n1和临界转矩Mm都与转子回路电阻无关,而电动机转差率与转子回路电阻成正比关系。所以,改变转子回路电阻即改变了电动机机械特性的斜率。在一定的负载下,采用不同的转子回路电阻值就得到不同的电动机转速。如图1中的n1、n2、n3......。这种方法的缺点是转子串电阻调速方法在低速时,由于电动机转差率高而使电动机损耗严重;且在低速时由于调速特性软,而工作转速不易稳定,同时在轻载时调速范围很小。
交流串级调速 在交流绕组式异步电动机转子绕组中,外加附加电动势,通过调节附加电动势值进行电动机调速的方法。
按附加电动势的获得方式不同,串级调速有晶闸管串级调速和电机串级调速。目前,晶闸管串级调速已取代了电机串级调速,图2为其电气原理图。图中AM为交流绕线式异步电动机,电动机转子绕组中感生的电动势经三相不可控整流桥DR整流成直流电压Ud。TR是由晶闸管组成的三相可控整流器,它工作在逆变状态,其输出的逆变电压Uβ作为串级调速的附加电动势,Ud>Uβ。Uβ和Ud比较后产生的电流Id与电动机电磁转矩有关的转子电流I2成正比。在同一负载下,改变电动机转矩就可调节电动机转速,所以改变Uβ就可进行电动机转速调节。
串级调速具有良好的力能指标。电动机转子整流电路把电机转子交流转差功率转换成直流功率,再通过工作在逆变状态的晶闸管整流器转换为交流功率返回电网。故串级调速系统的效率高,在高速时可达90%以上,是一般交流调速方法所不及的。由于回路中的晶闸管整流器工作在逆变状态,它除了向电网返送有功功率外,还要向电网吸取无功功率,从而使串级调速系统的功率因数较低,在电机高速运行时仅为0.5左右。
变极调速 改变电动机磁极对数的调速方法。改变异步电动机定子绕组的接线方式,使电动机磁极对数p变化,即可改变电动机的同步转速n1(=60f1/P)。
变极调速要求拖动电动机必须是专门的变极电动机。电动机的极对数可成倍比地改变(如2/4极,4/8极);也有非倍比的双速电动机(如4/6极,6/8极)或三速电动机(如4/6/8),这时电动机装有两套定子绕组。因此,变速变极电动机体积大,利用率比较低,成本高。它的调速级数少(2~3级),仅适用于不要求平滑调速,与齿轮机械调速配合用的各种机床等生产机械。
变频调速 改变交流电动机定子供电电源频率的调速方法。交流异步电动机的同步转速n1与电源频率f1成正比,改变f1就能进行电动机调速。但是由于电动机气隙磁通和电源频率f1的乘积是与电源电压U1成正比的,如果调节f1时不改变电源电压U1,将引起电机气隙磁通变化,从而产生电磁转矩下降或励磁电流上升。为了使电机磁通保持不变,在调频时必须同时进行调压,保持U1/f1不变。在这种条件下进行调速,能保证电动机的过载能力不变,得到近似直流调压调速的调速特性(图3)。
要实现调频调速,必须具有频率和电压可调节的交流电源。过去曾用一套旋转的变频机组来实现,但其体积庞大,噪声大,效率很低,所以曾影响了交流变频调速的应用和发展。20世纪60年代,随着电力电子技术的发展,出现了静止式电力电子变频电源,它具有静止、重量轻和效率高等优点,从而使交流调速系统的应用产生了一个飞跃。
电力电子变频器一般分两类。 一类是交流-交流变频器(又称直接变频器、循环变频器),它是把电压和频率固定的交流电源直接转换成频率和电压可调的交流电源。由于它的输出波形不够理想,所获得的电源频率大大低于原来电源的频率,并且所用的电力电子器件数量较多,利用率不高,故应用受到限制。另一类变频器是交流-直流-交流变频器(又称间接变频器),它是先把恒定电压、恒定频率的交流电源整流为可调压的直流电源,然后再将直流电源逆变为频率可调的交流电源。其整流器和逆变器均由电力电子器件构成。
现在广泛应用的交流-直流-交流变频器是脉宽调制型变频器,又称PWM变频器。它采用不可控整流器,输出电源频率和电压的调节均由 PWM逆变器来完成。这种变频器不但提高了电网的功率因数,而且加快了变频调速的动态过程。如采用正弦波脉宽调制变频器(称SPWM),其输出的电压可接近正弦波,谐波分量很少,提高了变频调速的效率。脉宽调制型变频器功率元件采用有自关断能力的电力电子器件,如可关断晶闸管(GTO)和大功率晶体管(GTR)等,简化了变频电路的结构,提高了开关频率,并改善了输出波形。
根据交流异步电动机的转速表达式交流电力拖动调速技术有交流调压调速、转子串电阻调速、交流串级调速、变级调速和变频调速5种。
交流调压调速 改变定子电源电压的调速方法。交流异步电动机的电磁转矩M与定子电压U1成平方正比关系。调节定子电压使电磁转矩产生变化,在一定的负载转矩下可使电动机转速改变。根据电机设计,一般都采用低于铭牌规定的定子额定电压进行调压调速。交流调压一般采用定子绕组串接可调阻抗、串接自耦变压器和串接晶闸管调压器的方法。交流调压调速方法调速范围不大,调速引起的损耗随转速的降低而增大。适用于调速要求不高、不经常在低速下运行的负载。
转子串电阻调速 改变转子绕组电路外串电阻的调速方法。这种调速方法只适用于绕线式交流异步电动机。电动机同步转速n1和临界转矩Mm都与转子回路电阻无关,而电动机转差率与转子回路电阻成正比关系。所以,改变转子回路电阻即改变了电动机机械特性的斜率。在一定的负载下,采用不同的转子回路电阻值就得到不同的电动机转速。如图1中的n1、n2、n3......。这种方法的缺点是转子串电阻调速方法在低速时,由于电动机转差率高而使电动机损耗严重;且在低速时由于调速特性软,而工作转速不易稳定,同时在轻载时调速范围很小。
交流串级调速 在交流绕组式异步电动机转子绕组中,外加附加电动势,通过调节附加电动势值进行电动机调速的方法。
按附加电动势的获得方式不同,串级调速有晶闸管串级调速和电机串级调速。目前,晶闸管串级调速已取代了电机串级调速,图2为其电气原理图。图中AM为交流绕线式异步电动机,电动机转子绕组中感生的电动势经三相不可控整流桥DR整流成直流电压Ud。TR是由晶闸管组成的三相可控整流器,它工作在逆变状态,其输出的逆变电压Uβ作为串级调速的附加电动势,Ud>Uβ。Uβ和Ud比较后产生的电流Id与电动机电磁转矩有关的转子电流I2成正比。在同一负载下,改变电动机转矩就可调节电动机转速,所以改变Uβ就可进行电动机转速调节。
串级调速具有良好的力能指标。电动机转子整流电路把电机转子交流转差功率转换成直流功率,再通过工作在逆变状态的晶闸管整流器转换为交流功率返回电网。故串级调速系统的效率高,在高速时可达90%以上,是一般交流调速方法所不及的。由于回路中的晶闸管整流器工作在逆变状态,它除了向电网返送有功功率外,还要向电网吸取无功功率,从而使串级调速系统的功率因数较低,在电机高速运行时仅为0.5左右。
变极调速 改变电动机磁极对数的调速方法。改变异步电动机定子绕组的接线方式,使电动机磁极对数p变化,即可改变电动机的同步转速n1(=60f1/P)。
变极调速要求拖动电动机必须是专门的变极电动机。电动机的极对数可成倍比地改变(如2/4极,4/8极);也有非倍比的双速电动机(如4/6极,6/8极)或三速电动机(如4/6/8),这时电动机装有两套定子绕组。因此,变速变极电动机体积大,利用率比较低,成本高。它的调速级数少(2~3级),仅适用于不要求平滑调速,与齿轮机械调速配合用的各种机床等生产机械。
变频调速 改变交流电动机定子供电电源频率的调速方法。交流异步电动机的同步转速n1与电源频率f1成正比,改变f1就能进行电动机调速。但是由于电动机气隙磁通和电源频率f1的乘积是与电源电压U1成正比的,如果调节f1时不改变电源电压U1,将引起电机气隙磁通变化,从而产生电磁转矩下降或励磁电流上升。为了使电机磁通保持不变,在调频时必须同时进行调压,保持U1/f1不变。在这种条件下进行调速,能保证电动机的过载能力不变,得到近似直流调压调速的调速特性(图3)。
要实现调频调速,必须具有频率和电压可调节的交流电源。过去曾用一套旋转的变频机组来实现,但其体积庞大,噪声大,效率很低,所以曾影响了交流变频调速的应用和发展。20世纪60年代,随着电力电子技术的发展,出现了静止式电力电子变频电源,它具有静止、重量轻和效率高等优点,从而使交流调速系统的应用产生了一个飞跃。
电力电子变频器一般分两类。 一类是交流-交流变频器(又称直接变频器、循环变频器),它是把电压和频率固定的交流电源直接转换成频率和电压可调的交流电源。由于它的输出波形不够理想,所获得的电源频率大大低于原来电源的频率,并且所用的电力电子器件数量较多,利用率不高,故应用受到限制。另一类变频器是交流-直流-交流变频器(又称间接变频器),它是先把恒定电压、恒定频率的交流电源整流为可调压的直流电源,然后再将直流电源逆变为频率可调的交流电源。其整流器和逆变器均由电力电子器件构成。
现在广泛应用的交流-直流-交流变频器是脉宽调制型变频器,又称PWM变频器。它采用不可控整流器,输出电源频率和电压的调节均由 PWM逆变器来完成。这种变频器不但提高了电网的功率因数,而且加快了变频调速的动态过程。如采用正弦波脉宽调制变频器(称SPWM),其输出的电压可接近正弦波,谐波分量很少,提高了变频调速的效率。脉宽调制型变频器功率元件采用有自关断能力的电力电子器件,如可关断晶闸管(GTO)和大功率晶体管(GTR)等,简化了变频电路的结构,提高了开关频率,并改善了输出波形。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条