1) reference level
参考级
2) secondary reference point
二级参考点
3) reference level
(1)参考级(2)参考电平
4) suggested permissible level of noise
参考容许噪声级
5) ARIS(advanced inertial reference sphere)
[军]高级惯性参考球体
6) advanced inertial reference sphere,ARIS
高级惯性参考球体
补充资料:惯性参考系
惯性参考系 inertial reference frame 牛顿第一定律和牛顿第二定律都能成立的参考系。简称惯性系。并非在所有的参考系中这两定律都成立,例如在自由下落的参考系中,可看到地球加速上升;在绕轴转动的参考系中,可看到地球反向转动,这些现象显然违背了牛顿第一、第二定律。地球既有自转又有绕太阳的公转,严格地说,以地面上任一点为原点的参考系,都不是惯性参考系,但因这些点的加速度很小 ( 自转加速度在赤道上只有 0.034米 / 秒2 ,其他地方更小;公转的向心加速度只有0.006米/秒2 ) ,一般仍可视为惯性系。在地面上生活的人们,也丝毫感觉不到地球在动,虽然地球的自转和公转的线速度都大得惊人。中国古代的学者早就发现这问题,约1800年前编成的《尚书纬·考灵曜》中,就写有“地常动移而人不知,譬如人在大舟中闭舱而坐,舟行不觉也。”西欧直到1632年伽利略的《关于托勒密和哥白尼两大世界体系的对话》中,才提到船以任何速度前进,只要运动是匀速的,也不忽左忽右地摆动,则在密闭的船舱中,小虫向各方面飞行,水滴从舱顶落向舱底,人并脚上跳,都将和静止时一样,不能从其中任何一个现象确定船在运动还是静止,从而伽利略总结出经典力学的重要规律,即不论进行怎样的力学实验,都不能判断一个惯性系处于静止状态还是在作匀速运动。这条原理称伽利略相对性原理。对任一惯性系作匀速运动的参考系都是惯性系;对惯性系作加速运动或转动的参考系,牛顿运动定律就不能成立,称为非惯性参考系,简称非惯性系。要使牛顿运动定律仍能在非惯性系中成立,就须给非惯性系中的物体附加一个惯性力。这个力从惯性系角度来看是虚拟的,既没有施力的物体,更不存在反作用,只是为了计算方便而添加的;但就非惯性系角度来看,尽管这个力没有反作用力,但它像真实的力那样起作用,惯性力包括离心力和科里奥利力。 伽利略的相对性原理也可解释为一切惯性系都是等价的。尽管物体的动量、动能在不同惯性系中有完全不同的值,但动量定理、动能定理、动量守恒(见动量守恒定律)乃至一定条件下的机械能守恒(见机械能守恒定律)在一切惯性系中都成立。这个相对性原理在经典力学中的成功使物理学家相信,任何物理现象及其规律都应遵循这条原理。但在19世纪发现并非全是如此,A.爱因斯坦在1905年发表的《论动体的电动力学》中指出:大家知道,麦克斯韦电动力学——像通常为人们所理解那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导体和磁体的相对运动有关,可是按照通常的看法,这两个物体中究竟是这个在运动还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那末在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那末磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是对等的——却会引起电流。这种电流的大小和途径都同前一情况中有电力所产生的一样。从这类例子和证明地球相对以太运动的实验的失败,使爱因斯坦放弃旧的时空观,而以新的时空观解决了上述“不对称”的问题。在伽利略相对性原理的基础上建立了爱因斯坦相对性原理,使惯性参考系展现出更为辉煌的光彩。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条