1) spline approximation
样条逼近/样条拟合
2) spline approximation
样条逼近
1.
Fitting method for pump characteristic curve based on optimal knots spline approximation;
基于最优节点样条逼近的水泵特性曲线拟合方法
2.
Study on evaluation method using spline approximation;
基于样条逼近的评价方法研究
3.
By using the theorem of Lezanskil this article has proved the strong uniqueness of spline approximation in lp(2≤p<∞) spaces according to the definition of Smarzewki.
本文利用Lezanski的定理,证明在lp(2≤p<∞)空间中按照Smaxzewki提出的样条逼近具有强唯一性此外,还证明当1<p<2时在lp空间中样条逼近也具有强唯一
3) B-spline approximation
B样条逼近
1.
The quasi-uniform B-spline approximation algorithm is uesd to fit the discrete data , then the adopted adaptive sampling of key points of the fitted curve based on curvature reduces the data.
由激光线扫描法测量曲面获取截面轮廓数据 ,采用准均匀 B样条逼近算法对离散数据进行拟合 ,然后进行 B样条曲线基于曲率特征的自适应采样以实现数据压缩 ,再生成三维造型软件 Pro/ E的接口文件 *。
4) approximation X-spline
逼近X-样条
5) spline approximant
样条逼近式
6) spline fitting
样条拟合
1.
Aimming to the development of ITS,this paper applies the theory of spline fitting to traffic flow forecasting and solves the kernel function with.
针对智能交通系统的开发,论文将样条拟合的思想应用到交通流预测领域,利用贝努利多项式求解核函数,进而利用非参数回归理论进行交通流预测。
2.
Based on the research of the characters between the two target traces, the TPSF relation model is presents to complete the relation among interrupted target situation through two target trace prediction relation and spline fitting, and implement the probability model of lose target and new target.
在研究了态势目标航迹关联特点的基础上 ,建立了航迹预测和样条拟合关联模型 。
3.
A new control system is presented based on spline fitting and interpolating, in order to improve the programming efficiency and precision of 3 D laser cutting tools.
由于实现了示教点的样条拟合和三维曲线的直接插补,而不必采用传统的以直线段或圆弧段拟合的方式,从而在加工轨迹数学模型的获取与后续加工的集成方面较好地满足了大功率三维激光切割机的使用要求。
补充资料:样条逼近
样条逼近
spline approximation
的.在有限元方法中,分片多项式函数,即样条(sphne)被选作基函数.例如,设Q是RZ中的一个有界区域,它可以分解成有限个直角三角形子域T,,1(i簇N.对固定的i,多项式 p(x:,xZ)二 二二l+:Zx,+二3 xZ+,4x{+:sx,xZ+:6x;由条件 p,(夕,,)二f(夕:,),p,(叮。)二f(任,,),j二l,2,3确定,其中函数f(P)在瓦上连续,几,是三角形叭的顶点,q.,是T:各边的中点.对p‘T:,i=o,…,N,令S(p)=p(尸).如果f任W;(。),则有 }}f一S}}甲:(。)续ch’一’}}f}},;(Q),j=0,l,其中h是T:的某条边的长度,。是一个绝对常数.样条逼近t刻吮aP户旧xmlad.l;c““a益”一annp0Kc从Ma-”“,」 利用样条(sP」ine)近似地表示某个函数,或根据不完全信息(例如,根据函数在某些点的取值)对给定函数类的函数用样条进行近似重建. 正如函数逼近经典理论中那样,人们要研究样条逼近的线性方法(包括样条插值(印】ine此erpohtion”,最佳方法,以及用非线性样条类,例如,变结点的样条进行通近等. 利用样条作最佳逼近.这将涉及到存在性和唯一性问题,最佳退近样条的特征性质(见最佳通近元(element of best aPProxlrr以七on)),通近阶,以及样条与给定函数类的偏差的渐近性质与精确上界等.带固定结点的样条不能形成从e5。山eB系(Chebyshevsys-tem);因而,最佳逼近样条在Cla,b]中不一定是唯一的,并且最佳逼近样条的特征性质比最佳通近多项式(polynolllial of best aPPro~tion)(见汇81)的特征性质更复杂.然而,在L【“,b]中,对于连续函数子类来说,当最佳逼近样条是由〔a,b]上形成堆-触IlleB系的光滑函数粘结而成时,它们则具有唯一性质(见fZ」).具有确定的光滑性但结点非固定的样条(这里假定结点数不超过某个给定的数目)不能形成一个闭集,因此,最佳逼近样条此时不一定存在.逼近阶可用下述结果进行刻画(【6」): {j .f〔,(、)一s鱿,△。(、)}{:。L“,。}‘ 簇e{I△。}z‘一,一’十“‘。,一,(j(,‘’),l}A。}1)。,(1) l蕊P(q石的,其中,S。,‘。〔x)是一个次次多项式样条,其结点为音叮分点 △。:“二x尸‘川叼<…<式”,=b, 妇△。}二~(x、l一x,), 0疾f(”一1田*(f,占)任是L、[a,b]中的k阶光滑模(见光滑性的模(smootlmess,modulus of)),j.是具有l一l阶绝对连续导数且在L。中具有l阶导数(l簇l毛m)的函数,i二O,1二,l一1.当l蕊q(p簇的时,可用i一l取代(l)中的i并月可移去常数}1△。{l’一p一’十“一’.对于多维样条已得到了较(l)更弱的类似不等式例如,如果f任体竺(。)(Co俪es空f’til),S会是具有均匀结点巨问距为h的(每个变量的次数至多为k的)样条集合,且区域O满足严格锥条件〔见嵌入定理(imbedding theorems)),则有 infl!f一s}{w,、。)(c·h人一,}}f}},;(。),0簇j簇k· s“之对于均匀划分({△。}=1/。)和函数类w攀千’,当l城p蕊q簇的时,(l)式右边的阶为n‘’一,一’一,+·如果考虑光滑度为m一l,变结点数不超过n的m次样条的逼近,则可以证明(17〕),以结点的选取为代价,逼近阶为n一勿一’+’.对于具有均匀结点的多项式样条对某些周期函数类的最佳一致逼近,已有一系列完满结果.例如,对函数类评‘H。,其中,田(的是凸连续模,r次样条偏差的上确界已被确定(见「4]);它恰好等于相应函数类的宽度(俪dth).对高阶导数具有进一步限制的最佳样条逼近也已被研究(汇6〕).在研究最佳求积公式时自然产生了特殊函数(b一:)r的最佳逼近问题(见单样条(、叮幻nosPline)). 样条通近的线性方法.对这些方法的研究早在最佳样条逼近问题之前就开始了,当时主要是研究插值样条(interpo坛石on spl比)逼近(见(l】,[31,(5]).插值样条通常具有与最佳逼近样条同样的逼近阶,这正是它比多项式插值优越的一个方面.因此,如果一个函数在(一的,的)上有连续的;阶导数,则对于具有均匀插值结点xj=ih,i=o,土1,士2,…,和均匀样条结点的n)r次多项式插值样条S。(x,h),逼近估计 l}f〔!,(x)一s;‘,(x,h)}}。(一。,。)成 簇C·口。+,_,(f(‘),h),i二o,z,…,:成立.在研究具有任意结点的插值样条时,常把插值结点间的最大距离选作为逼近参数(通常,插值结点与样条结点是密切相关的).在应用中,用得最广泛的样条是多项式插值三次样条S。(x)(cubic sPlines).这与三次样条的构造通常归结为求解具有主对角占优的三对角矩阵的线性方程组这一事实有关.这种方程组的求解很容易在计算机上实现.止廿卜,如果函数f在汇a,b]上有天(0簇k城3)阶连续导数,则有下述估计: {1 .f‘,(x)一s;‘,(x)J}。:。,,簇 簇e}}△。}}“一‘。(f(‘),}}△。{}),0蕊i簇k,其中欢,l)是插值结点.当k二l或2时,常数。>O不依赖于f和划分△。.当k二O或k=3时,对剖分序列△。要施加进一步的限制.对多维三次样条和高次样条均有类似的结果成立. 奇次插值样条具有一系列的极值性质.例如,在所有于「a,b]上(。一l)阶导数绝对连续,m阶导函数属于LZ巨,bJ且在点义,(a
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条