说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部连通[的]
1)  locally connected
局部连通[的]
2)  semi-locally simply connected
半局部单连通[的]
3)  locally path connected
局部道路连通[的]
4)  Locally connected
局部连通
1.
Devoted to the study on the theory of H-connected space,which has been investigated by Jungck [1] in detail,we first give Jungck’s theorem another proof free from Whyburn [2] ,and then give another theorem in which“compact”hypothesis in Jungck’s theorem is replaced by the locally connected one.
其次对局部连通[的]H -连通空间得到了同样的定理 :有限个具有第一可数性质的局部连通[的]H -连通空间的乘积空间是H -连通空间 。
2.
It is proved that if G is conected, locally connected graph on at least three vertices such that the set of claw centers is independent, and if the subgraph induced by the neighbor of v is strong 2-dominated for any claw centre v , then G is fully cycle extendable.
设G是顶点数不少于3的连通、局部连通图。
3.
In this paper, we prove that if G is connected, locally connected graph on at least three vertices such that the set of claw centres B is independent, and if G-B is locally connected, then G is fully cycle extendable.
本文将证明:设G是顶点数≥3的连通、局部连通图,如果G的爪心集合B是点独立集,且G-B是局部连通[的],则G是完全圈可扩的。
5)  locally connected graph
局部连通图
6)  local connectivity
局部连通性
1.
This paper first presents two different mechanisms maintaining local connectivity AODV routing protocol:LL mechanism based on link layer feedback information and Hello mechanism of network layer,and compares the performance of AODV routing protocol under these two mechanisms through NS2.
针对AODV路由协议的两种局部连通性维护机制进行研究:链路层反馈信息的LL机制和网络层Hello机制,并通过NS2对2种不同机制下的AODV路由协议性能进行比较。
2.
In this paper, based on the theory of connectivity of filled Julia Setsfor even quartic polynomials, and local connectivity of Julia sets, connectivity offilled Julia sets for a class of quartic polynomials are concerned.
本文在Julia集的局部连通性和偶四次多项式Julia集的连通性理论的基础上,讨论了一类四次多项式填充Julia集的连通性。
补充资料:局部连通连续统


局部连通连续统
locally connected continuum

局部连通连续统【l优心y戊.脸的ed切“加.口.;加以几研。eaa3.诚.oT恤y外,」 一个连续统,它是局部连通空间(】以川ly coIL以戈IedsPace),局部连通连续统的例子有n维立方体,n=O,l,…,1刃七鱿立方体(Hilbertcube),和所有介-xo肋.立方体(T正honov CUbe),函数 ,一sin上.0<二簇1. X的图象和区间I={(0,y):一1镬夕簇l}的并集给出了(在I的点上)不是局部连通的连续统的例子.可度量化连续统是局部连通的,当且仅当它是Jo攻恤n意义下的曲线(见线(曲线)(h茂(Cun尼))).任何可度量化局部连通连续统都是道路连通的(见道路连通空间(path一conn以众沮sPaCe)).此外,这种连续统K的任意不同两点都包含于K中一条简单弧上. B.A.nac‘HK佃撰白苏华、胡师度译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条