说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部单连通
1)  locally simply connected
局部单连通
2)  uniformly locally sim-ply-connected
一致局部单连通
3)  semi-locally simply connected
半局部单连通[的]
4)  Locally connected
局部连通
1.
Devoted to the study on the theory of H-connected space,which has been investigated by Jungck [1] in detail,we first give Jungck’s theorem another proof free from Whyburn [2] ,and then give another theorem in which“compact”hypothesis in Jungck’s theorem is replaced by the locally connected one.
其次对局部连通的H -连通空间得到了同样的定理 :有限个具有第一可数性质的局部连通的H -连通空间的乘积空间是H -连通空间 。
2.
It is proved that if G is conected, locally connected graph on at least three vertices such that the set of claw centers is independent, and if the subgraph induced by the neighbor of v is strong 2-dominated for any claw centre v , then G is fully cycle extendable.
设G是顶点数不少于3的连通、局部连通图。
3.
In this paper, we prove that if G is connected, locally connected graph on at least three vertices such that the set of claw centres B is independent, and if G-B is locally connected, then G is fully cycle extendable.
本文将证明:设G是顶点数≥3的连通、局部连通图,如果G的爪心集合B是点独立集,且G-B是局部连通的,则G是完全圈可扩的。
5)  locally connected graph
局部连通图
6)  local connectivity
局部连通性
1.
This paper first presents two different mechanisms maintaining local connectivity AODV routing protocol:LL mechanism based on link layer feedback information and Hello mechanism of network layer,and compares the performance of AODV routing protocol under these two mechanisms through NS2.
针对AODV路由协议的两种局部连通性维护机制进行研究:链路层反馈信息的LL机制和网络层Hello机制,并通过NS2对2种不同机制下的AODV路由协议性能进行比较。
2.
In this paper, based on the theory of connectivity of filled Julia Setsfor even quartic polynomials, and local connectivity of Julia sets, connectivity offilled Julia sets for a class of quartic polynomials are concerned.
本文在Julia集的局部连通性和偶四次多项式Julia集的连通性理论的基础上,讨论了一类四次多项式填充Julia集的连通性。
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)

单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条