1) affine [algebraic] variety
仿射[代数]簇
2) affine algebraic variety
仿射代数簇
3) quasi-affine algebraic variety
拟仿射代数簇
4) projective variety
射影代数簇
1.
Let X be a n dimensional projective variety,x be a fixed point in X,and let C_t(X,_X(1)) be the set of rational curves C of degree t passing through x in X,p_t(X)=dimC_t(X,_X(1)) for any positive integer.
设X是n维射影代数簇,取定X中一点x,设Ct(X,X(1))表示X中的过x点的t次有理曲线的集合,pt(X)=d imCt(X,X(1))。
5) affine algebra
仿射代数
1.
Using the two different startriangular relations and antisymmetric fusion, a realization of q-deformed quantum affine algebra is obtained.
应用两种不同的星三角关系及其对应的Boltzmann面权,通过反对称聚合,构造出了在椭圆情形下的q变形仿射代数。
6) dimension of an affine variety
仿射簇的维数
补充资料:仿射
仿射
affinity
仿射!确nity;呻中Ifu盯er] 仿射变换陌币ne transfo瓜atlon)的简称定义为非退化线性代换 二A派丰“
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条