2) reflexive algebra
自反代数
1.
Let be a reflexive algebra in Banach space X such that O+≠O and X_≠X in Lat, thenevery ring automorphism φ (resp.
设为Banach空间X中一自反代数使得在Lat中O+≠O且X_≠X,则的每一环自同构φ(环反自同构ψ)具有形式φ(A)=TAT-1(ψ(A)=TA*T-1),其中T:X→X(T:X*→X)或为一有界线性双射算子或为一有界共轭线性双射算子。
3) Reflection algebra
反射代数
4) algebraic reflexivity
代数自反
1.
Some further results about algebraic reflexivity introduced by Hadwin were obtained.
基于线性插值的需要 ,本文引入了弱代数自反的概念 ,并发现两者有一种对偶关系 ,于是 ,有关代数自反的许多结果可以移植到弱代数自反
5) reflection superalgebra
反射超代数
1.
pi(n, m)(i=1,2,3; n+m=3)cases aretaken as the examples,and the corresponding reflection superalgebras are given.
本文引入了与阶化反射方程相关的反射超代数的概念,并以具有四个量子参数的量于超代数gl_(q,pi)(N,M)(i=1,2,3;N+M=3)为例,具体给出了相应的反射超代数。
6) reflexive BCK-algebras
自反BCK-代数
补充资料:代数的代数
代数的代数
algebraic algebra
代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条