1) disconnected set
不连通集
2) totally disconnected set
完全不连通集
3) totally disconnected closed set
完全不连通闭集
4) compact totally disconnected subset
紧致完全不连通集
5) connected set
连通集
1.
A class of connected sets, whose Hausdorff dimension were S=n/(n+1)ln3/ln2 (n≥1) , were constructed on the Sierpinski gasket.
在Sierpinski垫上构造Hausdorff维数为S的连通集合,其中S=n/(n+1)ln3/ln2,n≥1。
2.
The author extended the connected set s property theorem and made it possible to solve the problems perfectly which can t be solved by the previous theorem.
对连通集的性质定理予以推广 ,使得许多在原定理下不能解决的问题 ,得到了较为圆满的解答 。
3.
A class of connected sets,whose Hausdorff dimension was S=ln(30+31+…+3n)ln3n,n1,was constructed on the Sierpinski Rug.
以Sierpinski地毯为例,在其上构造Hausdorff维数为S的一类连通集合,其中S=ln(30+31+…+3n)ln3n,n 1。
6) connected set
连通集合
1.
These algorithms are either based on the density connected chains,or weighted density,or the gravity based connected sets.
随着聚类分析的蓬勃发展,涌现出了许多聚类算法,其中最重要的算法之一是基于密度的空间聚类以及其多种变种——基于密度连通链、基于加权密度、基于引力连通集合的算法。
2.
A connected set is constructed on the special fractal set (generalized Sierpinski rug), and whose Hausdorff dimension is ln10/ln9; then a differential function is constructed on the connected set to prove that the connected set is a Whitney s critical set.
在特殊的分形集(广义的Sierpinski地毯)上构造一个Hausdorff维数为ln10/ln9连通集合,然后在该连通集合上构造一个可微函数,利用该函数证明了该连通集合是一个Whitney临界集。
3.
Firstly,a connected set E was constructed on the Sierpinski gasket which was self-similar set resulted from nine contraction function with contraction ratio of 1/8 and satisfied the open set conditions, and whose Hausdorff dimension was ln9/ln8;secondly,a differential function was constructed on the connected set E to prove that E was a Whitney′s cri.
首先 ,在 Sierpinski垫中构造一个连通集合 E,E是由 9个压缩比为 1 /8的压缩函数生成的自相似集且满足开集条件 ,它的 Hausdorff维数为 ln9/ln8;其次 ,在连通集合 E上构造一个可微函数 ,利用该函数分 3种情形证明了 E是一个 Whitney临界集 。
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条