说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 阿贝尔簇的极化
1)  polarization of an Abelian variety
阿贝尔簇的极化
2)  polarized Abelian variety
极化的阿贝尔簇
3)  polarized abelian variety
配极阿贝尔簇
4)  p-rank of Abelian variety
阿贝尔簇的p秩
5)  Abelian variety
阿贝尔簇
6)  simple Abelian variety
单阿贝尔簇
补充资料:配极


配极
polarity

卜‘点顶点‘’与一个“线顶点”之间有一条边. 经典的背景是具有一个非退化双线性型Q的射影空间P”的配极.d维子空间与(”一d一l)维子空间之间对应的配极用,(V)二N-=lx任P”:对于所有的y任V,Q(、,y)二o}定义. 在(众sargues或非烧sal’g ues)射影空间P的背景中,一个配极也视为一个对称关系叮CPxP,使得对于所有。任尸,v-二毛w任p二(。,、、)任6}或是一个超平面或是p自身.如果尸‘二自泥,。土=必,则配极非退化如果VC=V上二自。,;。土,则子空间V是全迷向的(to曰y isotropic).配极【训颐灯;no朋pH代T],配极变换(凶】aru遨1侣fo卜订砂t】on) 一个对射变换(con℃lation)二,满足犷=id,即袱Y)二X,当且仅当二(X)二Y.一个配极划分所有的子空间成为偶对;特别地,如果一偶对由子空间50与S。_、所组成,这里S。二二(S。一1)是一点而S。_,二兀(S。)是一超平面,则S。称为超平面S。一,的极点(poleoftheh只尤rplalle),而S。一,称为点凡的极面(pofar of the po以).当且仅当K允许有一个对合反自同构(snvolut0I了anti一automo印ham):(即f二id)lI寸,除环K上的射影空间fl(K)有一个配极.假设:用一个半双线性型几(x,y)表示,则当凡仅当/。(尤,J,)=O蕴涵f:(y,x)=0时,兀是一个配极. 一个配极二或是一个辛对射变换(syrnPlectic以)rrelation).用对于每一个点尸,尸‘兀(尸)的事实刻lro](在这个情形下,j(兀,y)是A。、.上的一个反称型,而K是一个域),或者7r能够表示为A,十,上的一个沉对称型::(j。(x,y))二./。(y,x)(对称配极(s”11盆lletric polarity)).在这个情形下,一个非严格的迷向零子空问的存在性等价于除环的特征等于2(特别地.如果charK笋2,则任何零子空间是严格迷向的). 相应于一个配极兀可定义将一个射影空间分解为子空问,这样就可能将表示北的半双线性型化为典范型.这些子空间中最重要的如下: M—极大非迷向的零子空问;它的维数是武动一],这里n是偶数且.称为兀的亏量(deficiell卿),井月厂是反称的; U—极大严格迷向子空问;它的维数是i(二)一l,i称为指标(i们dex),厂三) J—连通分支,自由或零子空问,非迷向的,这里f是正定的或负定的,M自I=必. 沙二M+U—极大零子空问;它的维数是i(兀)+n(兀)一1. 如果二F=F二,财射影变换F称含一二容许的(:一adll云铝ible)(关于配极幻.当且仅当在K中存在c,使得./(厂x,厂y)=c甲(f(叉,y))时,一个半线性变换(厂,势)诱导一个兀容许的射影变换.二容许的变换构成一个群G二(称为配极群(Po俪ty group)).如果群G二是传递的,则或者空间n。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条