1) deviation
[英][,di:vi'eɪʃn] [美]['divɪ'eʃən]
偏差;变差
2) variance and skewness
变差及偏差
3) deviating argument
偏差变元
1.
Periodic solutions to third-order functional differential equation with deviating argument;
一类三阶具偏差变元微分方程的周期解(英文)
2.
Oscillation for systems of a class of second order partial eifferential equations with deviating arguments;
带有偏差变元的二阶偏微分方程组的振动性
3.
Asymptotic behavior of solutions for first order nonlinear difference equations with deviating arguments is studied.
研究了一阶具偏差变元非线性差分方程解的渐近性,所得结果显著地改进并推广了已有文献中的结果。
4) deviating arguments
偏差变元
1.
Oscillation criteria for first order nonlinear differential equations with deviating arguments;
一阶非线性具偏差变元的微分方程的振动准则
2.
In this paper we consider the first order nonlinear delay differential equations with deviating arguments of the formx′(t)+a(t)f(x(t))+p(t)g(x(t))h(x(t-τ_1(t)),x(t-τ_2(t)),…,x(t-τ_n(t)))=0(*),where a,p,τ_j∈C(R~+,R~+),(lim)t→+∞(t-τ_j(t))=+∞,j=1,2,…,n,f,g∈C(R,R),xf(x)>0(x≠0),∫~1_01[]f(x)dx=+∞,∫~0_(-1)1[]f(x)dx=-∞,g(x)>0,and h∈C(R~n,R),x_1h(x_1,x_2,…,x_n)>0(x_1x_j>0,j=1,2,…,n).
研究一类一阶非线性具偏差变元的时滞微分方程x′(t)+a(t)f(x(t))+p(t)g(x(t))h(x(t-τ1(t)),x(t-τ2(t)),…,x(t-τn(t)))=0,(*)。
3.
To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green s formula and symbol function sign(·) are used.
研究具有偏差变元的抛物型方程组的一类边值问题 。
5) deviation variable
偏差变量
1.
Objective: To study the graphical method for goal programming problem whose goal function has multi-deviation variables in the same priority level.
目的:研究了对目标函数中同一优先级内含有多个带权偏差变量的目标规划问题的图解方法。
6) change of error
偏差变化
补充资料:Tonelli平面变差
Tonelli平面变差
Toneffi plane variation:
T加℃山平面变差吓b份组内理柑血“阅;To批朋”。。-cK翻朋pHau抓」 二元函数的一种数字特征,它可以用来定义依Tonelli意义的有界变差函数类.设f是矩形D=【a,blx【。,d]上给定的函数,又设函数 V少(x)三‘票沙f(x,y)和 V;(y)三。奥。f(x,y)为玩besgUe可测(前者在区间【a,b]上,后者在Ic,d」上).如果 bd :(f,。)三J。少(x)己x+丁:;(,)d,<二,则称函数.厂在矩形D上有有界(有限)的Tonelll平面变差(Tollelli plane硫lriation),并记这类函数为T(D).这定义由L.ToneUI(见【1],【2])引人.但是对连续函数,类T(D)的另外一种刻画(通过Ba-I.ch指标(Banach indl。山ix))可在5 .Banach更早的文献【4]中找到.如果函数f在矩形D上连续,那么曲面:二f(x,夕)有有限面积的充分必要条件是f属于T(D)(见T伪能l五定理(Tone山thco~)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条