1) axiom of pairing
配对公理
2) match theory
配对原理
3) physical pairing
物理配对
4) axiom of symmetry
对称公理
5) axiomatic distribution theory
公理化分配理论
1.
Based on the axiomatic distribution theory, the average pricing, the cooperation game theory and the serial pricing are compared with axiomatic analysis.
基于公理化分配理论,对平均分配机制、基于合作对策的分配机制以及序列分配机制进行了公理化研究和比较,最后建立了两阶段剩余索取权分配模型,将Shapley Shubik公式和序列分配机制分别应用于第一和第二阶段剩余索取权的分配。
6) fair distribution theory
公平分配理论
1.
Beginning with the theoretical basis of regulating the income distribution gap between the urban and the rural of China, it refers to fair distribution theory of Marxism.
本文首先论述了我国城乡居民收入分配差距调节的理论基础——马克思主义公平分配理论。
补充资料:Montmort配对
Image:11769922803222438.jpg
若i是一个 有界的区间,则i的长度定义为它的两个端点的距离,记为l(i);若i是一个无界区间,则定义i的长度为∞,也记成l(i)。
这样,
l(【0,1】) = l((0,1)) = 1,
l((-∞,0)) = ∞, l(【1,+∞】)。
我们的目的是希望把上述仅对区间有定义的长度概念推广到更一般的实数集上去。例如我们把它推广到了一个由实数子集构成的集族ω,并且对ω中每一元e(这是一个实数子集),我们用m(e)表示e的“长度”。此时很自然,我们希望ω满足下面三个条件:
(ω1)所有区间都是ω中的元;
(ω2)若e∈ω,则ec =r - e ∈ ω;
(ω3)ω中任意至多可数个元的并是ω中的元。
而对m,我们希望它满足下面三个条件:
(m1)对每一e∈ω,m(e)是一个非负广义实数,即m(e)或者是一个非负实数,或者是∞;
(m2)对每一区间i,m(i)= l(i);
(m3)若n>=1 是ω中任何一列两两不相交的元,则m(u∞n=1 en) = ∑∞n=1 m(en).
对一般的n维欧氏空间有类似的问题。下面我们来进行这一推广。
对每一个子集e,定义
m* (e) = inf{∑n l(i n):{i n} n >= 1是一列开区间并且e包含于u n i n }。
此时m* (e)称为e的lebesgue外测度。由于实数全体r是一个开区间并且e包含于r,所以上述定义是合理的,并且m* (e)是一个非负广义实数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。