1) Differential group delay (DGD)
微分群时延
2) differential group delay
差分群时延
1.
The character of polarization mode dispersion(PMD) in high-speed optical fiber transmission system is analyzed theoretically,and the mechanism of differential group delay(DGD) caused by PMD is found out.
文章从理论上分析了高速光纤通信系统中PMD的特性,得出了由PMD导致的DGD(差分群时延)的机理。
2.
Furthermore, differential group delay of the dispersion shifted fibers is measured using this method.
介绍了通过偏振复用孤子测量偏振模色散的基本原理 ,并且在实验上实现了对保偏光纤的测量 ,测量结果与通过数值计算得到的保偏光纤的差分群时延符合得很好。
3.
A new magnetic field measurement based on the Faraday effect and the measurement of differential group delay (DGD) in fiber grating was proposed.
提出了一种利用光纤光栅中法拉第效应和测量差分群时延(DGD)的直接测量磁感应强度的新方法,给出了理论分析和实验结果。
4) Differential group delay
差分群延时
1.
It is important to know how does the degree of polarization (DOP) change with differential group delay (DGD) when DOP is feedback information for adaptive PMD compensation.
在用偏振度作为反馈信号的动态偏振模色散补偿系统中 ,偏振度与差分群延时的关系对于准确快速的动态偏振模色散补偿很重要。
2.
Using this analytical expression and fast Fourier transform, the sensitivity and trackable differential group delay range of degree-of-polarization detection technique are investigated by numerical simulation in 20 Gb/s optical transmission system.
5个位周期 (75ps)的差分群延时进行跟踪 ,但当占空比低于 0 。
5) differential mode delay
微分模时延
1.
Relationship between differential mode delay and refractive index profile in multi mode fibers;
多模光纤微分模时延与折射率剖面分布关系
6) delay differential equation
延时微分方程
1.
The stability behavior of numerical solution for delay differential equations with many delays was studied.
讨论了带有多个滞时量的延时微分方程的数值稳定性,分析了用块θ–方法求解多延迟微分方程GPm–稳定和GPLm–稳定的条件,基于Lagrange插值,证明了块θ–方法GPm–稳定的充分必要条件是方法是A-稳定的,块θ–方法GPLm–稳定的充分必要条件是θ=1。
2.
This paper deals with the stability of the IRK method for the numerical solution of a delay differential equation with many delays.
研究了用IRK方法求解多延时微分方程数值解的稳定性,对于线性模型方程,分析并证明了IRK方法是GPLm-稳定的当且仅当它是L稳定的。
3.
This paper deals with the stability analysis of the Rosenbrock method for the numerical solution of delay differential equation with many delays.
研究了用Rosenbrock方法求解多延时微分方程数值解的稳定性。
补充资料:怀卢延让(时延让新及第)
【诗文】:
冥搜忍饥冻,嗟尔不能休。几叹不得力,到头还白头。
姓名归紫府,妻子在沧洲。又是蝉声也,如今何处游。
【注释】:
【出处】:
全唐诗:卷834-22
冥搜忍饥冻,嗟尔不能休。几叹不得力,到头还白头。
姓名归紫府,妻子在沧洲。又是蝉声也,如今何处游。
【注释】:
【出处】:
全唐诗:卷834-22
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条