1) Liner,low ionization nuclear
低电离核区
2) LINER galaxy
低电离核区星系
3) low-latitude ionosphere F
低纬电离层F区
4) light-load range
(核电站)低负荷区段
5) low voltage ionization
低压电离
1.
The qualitative analysis of N polyaromatics in heavy oil was made by a double adsorption separation followed by the application of low voltage ionization and high resolution MS direct sampling.
通过两次吸附分离,然后采用低压电离,高分辨质谱直接进样技术对重馏份油中的含氮多环芳烃进行定性测定。
6) Lower ionosphere
低电离层
1.
In this paper,studying the theory of High Power Microwave(HPM)propagation in lower ionosphere.
文章对高功率微波(HPM)在低电离层中的传输特性进行了研究,分析了低电离层中HPM的自作用效应,推导了HPM在低电离层中传输的自作用因子和电场振幅同初始场强的关系,并进行了数值模拟。
补充资料:电离氢区和中性氢区
以氢为主要成分的星际气体云。若星云附近有早型的炽热恒星,则中性氢会被恒星的紫外辐射电离,形成电离氢区。中性氢原子从最低能态变为电离状态须经波长短于912埃的紫外线照射。因此,电离氢区附近的恒星必须是能发出大量紫外辐射的O型或B型星。这些星的表面温度高达几万度,被称为激发星。电离氢区的温度也可以达到104K。此外,当星际云之间的密度非常低时,中性氢原子在宇宙线的作用下也会电离。电子和质子一旦分开,就不容易再复合,从而也会形成电离氢区。
在距激发星 10~100秒差距(视星云中氢原子的密度而定)以外,使氢电离的高能光子会迅速减少,电离氢区就过渡到中性氢区。事实上,大部分气体云都处于中性氢状态,中性氢区的温度一般在100K以下。观测表明,银河系旋臂的中性氢原子数密度约为每立方厘米1~10个,旋臂之间约为每立方厘米0.1个。估计中性氢的质量占银河系总质量的1.4~7%。由电离氢区过渡到中性氢区,氢的电离度下降得很快,过渡区的厚度取决于星云气体的密度,而同激发星的性质和电离氢区的半径无关。至于电离氢区的大小则取决于激发星的温度和星云气体的密度。
观测中性氢区和观测电离氢区所用的方法不同。对中性氢区,目前只能用射电方法观测氢原子发出的中性氢21厘米谱线,而对电离氢区,除观测射电辐射外,还可以用光学手段观测其各种发射线和禁线。
以下是两个典型的HⅡ区和HⅠ区的各种基本物理参数:
在距激发星 10~100秒差距(视星云中氢原子的密度而定)以外,使氢电离的高能光子会迅速减少,电离氢区就过渡到中性氢区。事实上,大部分气体云都处于中性氢状态,中性氢区的温度一般在100K以下。观测表明,银河系旋臂的中性氢原子数密度约为每立方厘米1~10个,旋臂之间约为每立方厘米0.1个。估计中性氢的质量占银河系总质量的1.4~7%。由电离氢区过渡到中性氢区,氢的电离度下降得很快,过渡区的厚度取决于星云气体的密度,而同激发星的性质和电离氢区的半径无关。至于电离氢区的大小则取决于激发星的温度和星云气体的密度。
观测中性氢区和观测电离氢区所用的方法不同。对中性氢区,目前只能用射电方法观测氢原子发出的中性氢21厘米谱线,而对电离氢区,除观测射电辐射外,还可以用光学手段观测其各种发射线和禁线。
以下是两个典型的HⅡ区和HⅠ区的各种基本物理参数:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条