1) borrow area
采泥区;采料区;取土区
2) borrow area
采泥区;采料区
3) marine borrow area
海洋取土区;海上采泥区
4) marine borrow area
海洋采泥区;海洋采料区
5) borrow area
采泥区
6) no borrow area
禁止采泥区
补充资料:采区巷道布置
用地下开采法采煤时,往往将开采水平沿走向划分为若干采区,作为矿井生产的基本单元。在采区范围内开掘一系列巷道,建立完整的采掘、运输、通风、供电和排水等生产系统,以保证正常生产。
缓倾斜煤层和倾斜煤层采区上山准备方式 矿井开掘出水平大巷后,一般沿煤层走向,每隔800~2500m开掘上山(见矿山井巷),将煤层划分采区,分区开采。典型的布置方式有两种:
采区单层布置 在开采薄及中厚煤层时,将每个煤层单独开采,在煤层或底板岩石内布置一个完整的生产系统。
在采区内通常开掘两条上山:①输送机上山,用于运煤、行人、回风;②轨道上山,用于运料、下放矸石、进风。必要时另开一条运人和通风上山。从上山向两侧开掘区段平巷,在区段平巷末端开掘切割眼,形成回采工作面(见煤回采工艺)。采出的煤经区段运输平巷及输送机上山,运至采区煤仓装车外运。新鲜空气由运输大巷经轨道上山和区段巷道进入工作面;回风由采区回风巷流出。
采区联合布置 60年代以来,随着机械化水平的提高,为减少巷道工程量和实行集中生产,在开采近距离煤层群时,采用联合布置或分组联合布置方式,将几个煤层划为一组,在最下面的煤层或底板岩石中布置共用的上山和平巷,一般开三条上山,各煤层和底板巷道用石门和溜煤眼相联系,建立一个统一的生产系统。
图1中,采区开采m1、m2两个煤层,沿倾斜划分为3个区段。阶段运输大巷 1和回风大巷2共用的采区输送机上山3和轨道上山4,它们都布置在m2煤层中。各煤层区段平巷实行双巷布置。m1层的区段运输平巷5,以溜煤眼6与采区输送机上山连通;m1层的区段轨道平巷7,以区段石门8和轨道上山相接。m2层的区段运输平巷9和m2层区段轨道平巷10,均直接与采区输送机上山和轨道上山分别相连。
m1层工作面采出的煤,经该层区段运输平巷运到区段溜煤眼,再通过采区输送机上山运至采区煤仓11;最后,在大巷车场12装车外运。m2层的煤,经该层区段运输平巷,直接运到采区输送机上山。
采区轨道上山兼作进风;输送机上山兼作回风。新鲜风流经区段石门和m1层区段平巷进入m1层工作面;废风经m1层轨道回风平巷和回风石门,流至阶段回风大巷。m2层工作面的新鲜风流,从轨道上山经m2层区段平巷进入;废风由轨道回风平巷,排至回风大巷。
采区联合布置减少了大巷的数目和巷道工程量,充分发挥运输设备的能力,节省设备和管线器材,提高生产能力。在中国煤矿中已广泛采用。
近水平煤层盘区巷道布置 近水平煤层的采区通常称盘区。盘区巷道布置的方式是:将井田划分为若干双翼布置的盘区,盘区走向长度约1200~2000m,倾斜长度2000~3000m。例如某矿的可采煤层为m1和m2,其倾角为4°~6°。在煤层内开掘运输大巷,自运输大巷开掘盘区回风上山和盘区材料上山;在盘区中央从运输大巷开掘盘区石门,从盘区石门开掘溜煤眼和进风行人斜巷。从盘区回风上山开掘盘区?胤缦锏馈T谂糖诓捎煤笸耸匠け诠ぷ髅?,一般长100~150m。工作面采下的煤经溜煤眼,在盘区石门内装车,经运输大巷外运。
这种准备方式简化了运输系统,提高了运输能力,改善了上山运输和巷道维护条件,有利于实行均衡生产;但石门开掘工程量大,费用高,工期长,一般在煤层多,储量大的大型矿井中使用。
倾斜长壁采煤法准备方式 在煤层或底板岩石中布置运输大巷和回风大巷;倾斜方向在沿煤层内布置运输斜巷和回风斜巷,至采区边界后,掘开切割眼,形成回采工作面,沿煤层倾斜方向采用仰斜或俯斜方式采煤。
房柱采煤法准备方式 美国开采近水平薄及中厚煤层时,采用房柱采煤法。在主平巷两侧成直角开掘3~4条平巷,分别用作运输、行人、进风、回风。在平巷两侧垂直布置煤房。
急倾斜煤层采区巷道布置 中国开采急倾斜煤层群的矿井,一般采用多水平、集中运输大巷、采区石门开拓方式。采区石门的间距约400~600m,随着生产集中化的要求,采区石门间距有加大的趋势。采区石门贯穿煤层后,就可布置采区巷道,有两种布置方式。
单层布置 煤层间距较大时,各煤层分别布置采区巷道,形成各自独立的运输、通风系统。采区三条上山眼多布置在煤层中,分别用作运煤、运料和行人、通风。采区煤仓穿过底板与采区石门连通,煤在石门中装车外运。
联合布置 煤层间距较小时,把几层煤联合起来布置采区巷道。一般几层煤共用一套上山眼和平巷。这些共用巷道布置在煤组最下面的煤层中,用区段石门将上部煤层联系起来,形成统一的采区生产系统(图2)。
选择布置原则 选择单层布置还是联合布置,主要取决于煤层间距,具体数值根据各矿区的地质和技术条件确定。中国淮南矿区区段石门长度在40m以内时,采用共用上山联合布置。间距更小的近距离煤层,可采用共用上山和共用平巷联合布置。
参考书目
中国矿业学院等院校编:《采煤学》,第一版,煤炭工业出版社,北京,1979。
缓倾斜煤层和倾斜煤层采区上山准备方式 矿井开掘出水平大巷后,一般沿煤层走向,每隔800~2500m开掘上山(见矿山井巷),将煤层划分采区,分区开采。典型的布置方式有两种:
采区单层布置 在开采薄及中厚煤层时,将每个煤层单独开采,在煤层或底板岩石内布置一个完整的生产系统。
在采区内通常开掘两条上山:①输送机上山,用于运煤、行人、回风;②轨道上山,用于运料、下放矸石、进风。必要时另开一条运人和通风上山。从上山向两侧开掘区段平巷,在区段平巷末端开掘切割眼,形成回采工作面(见煤回采工艺)。采出的煤经区段运输平巷及输送机上山,运至采区煤仓装车外运。新鲜空气由运输大巷经轨道上山和区段巷道进入工作面;回风由采区回风巷流出。
采区联合布置 60年代以来,随着机械化水平的提高,为减少巷道工程量和实行集中生产,在开采近距离煤层群时,采用联合布置或分组联合布置方式,将几个煤层划为一组,在最下面的煤层或底板岩石中布置共用的上山和平巷,一般开三条上山,各煤层和底板巷道用石门和溜煤眼相联系,建立一个统一的生产系统。
图1中,采区开采m1、m2两个煤层,沿倾斜划分为3个区段。阶段运输大巷 1和回风大巷2共用的采区输送机上山3和轨道上山4,它们都布置在m2煤层中。各煤层区段平巷实行双巷布置。m1层的区段运输平巷5,以溜煤眼6与采区输送机上山连通;m1层的区段轨道平巷7,以区段石门8和轨道上山相接。m2层的区段运输平巷9和m2层区段轨道平巷10,均直接与采区输送机上山和轨道上山分别相连。
m1层工作面采出的煤,经该层区段运输平巷运到区段溜煤眼,再通过采区输送机上山运至采区煤仓11;最后,在大巷车场12装车外运。m2层的煤,经该层区段运输平巷,直接运到采区输送机上山。
采区轨道上山兼作进风;输送机上山兼作回风。新鲜风流经区段石门和m1层区段平巷进入m1层工作面;废风经m1层轨道回风平巷和回风石门,流至阶段回风大巷。m2层工作面的新鲜风流,从轨道上山经m2层区段平巷进入;废风由轨道回风平巷,排至回风大巷。
采区联合布置减少了大巷的数目和巷道工程量,充分发挥运输设备的能力,节省设备和管线器材,提高生产能力。在中国煤矿中已广泛采用。
近水平煤层盘区巷道布置 近水平煤层的采区通常称盘区。盘区巷道布置的方式是:将井田划分为若干双翼布置的盘区,盘区走向长度约1200~2000m,倾斜长度2000~3000m。例如某矿的可采煤层为m1和m2,其倾角为4°~6°。在煤层内开掘运输大巷,自运输大巷开掘盘区回风上山和盘区材料上山;在盘区中央从运输大巷开掘盘区石门,从盘区石门开掘溜煤眼和进风行人斜巷。从盘区回风上山开掘盘区?胤缦锏馈T谂糖诓捎煤笸耸匠け诠ぷ髅?,一般长100~150m。工作面采下的煤经溜煤眼,在盘区石门内装车,经运输大巷外运。
这种准备方式简化了运输系统,提高了运输能力,改善了上山运输和巷道维护条件,有利于实行均衡生产;但石门开掘工程量大,费用高,工期长,一般在煤层多,储量大的大型矿井中使用。
倾斜长壁采煤法准备方式 在煤层或底板岩石中布置运输大巷和回风大巷;倾斜方向在沿煤层内布置运输斜巷和回风斜巷,至采区边界后,掘开切割眼,形成回采工作面,沿煤层倾斜方向采用仰斜或俯斜方式采煤。
房柱采煤法准备方式 美国开采近水平薄及中厚煤层时,采用房柱采煤法。在主平巷两侧成直角开掘3~4条平巷,分别用作运输、行人、进风、回风。在平巷两侧垂直布置煤房。
急倾斜煤层采区巷道布置 中国开采急倾斜煤层群的矿井,一般采用多水平、集中运输大巷、采区石门开拓方式。采区石门的间距约400~600m,随着生产集中化的要求,采区石门间距有加大的趋势。采区石门贯穿煤层后,就可布置采区巷道,有两种布置方式。
单层布置 煤层间距较大时,各煤层分别布置采区巷道,形成各自独立的运输、通风系统。采区三条上山眼多布置在煤层中,分别用作运煤、运料和行人、通风。采区煤仓穿过底板与采区石门连通,煤在石门中装车外运。
联合布置 煤层间距较小时,把几层煤联合起来布置采区巷道。一般几层煤共用一套上山眼和平巷。这些共用巷道布置在煤组最下面的煤层中,用区段石门将上部煤层联系起来,形成统一的采区生产系统(图2)。
选择布置原则 选择单层布置还是联合布置,主要取决于煤层间距,具体数值根据各矿区的地质和技术条件确定。中国淮南矿区区段石门长度在40m以内时,采用共用上山联合布置。间距更小的近距离煤层,可采用共用上山和共用平巷联合布置。
参考书目
中国矿业学院等院校编:《采煤学》,第一版,煤炭工业出版社,北京,1979。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条