1) air furnace
空气炉
2) hot air stove
热空气炉
1.
Application of hot air stove in production of ammonium phosphate;
热空气炉在磷铵生产中的应用
4) air-blown gasifier
空气气化炉
1.
Comparison about air-blown gasifier and oxygen-blown gasifier based on IGCC systems;
IGCC系统中空气气化炉与氧气气化炉的对比研究
5) vacuum degassing furnace
真空脱气炉(VD炉)
6) vacuum gas quenching furnace
真空气淬炉
1.
Describes the experience in making of brake-valves for double-room vacuum gas quenching furnace especially the working principle of its sealings,function transmission and the technological processes of its key components(valve body,linkage and valve plate),with a force analysis made to the linkage in detail.
介绍了真空热处理技术的优点,总结了双室真空气淬炉中附件"闸阀"的制造经验,阐述了闸阀的密封工作原理、作用、传动以及关键部件(阀体、连杆机构、阀板)的加工制造工艺,同时对连杆机构做了详细的受力分析,并指出"闸阀"制造过程工艺控制的重要性,只有严格控制加工工艺流程才能保证"闸阀"的制造精度,从而满足整台设备的技术参数。
补充资料:冶金炉热平衡和热效率
冶金炉的热平衡指的是向炉内提供的热量等于被加热物达到工艺要求时所吸收的热量加上各种热损失的总和。热平衡的理论基础是热力学第一定律。分析热平衡的目的是从热能流向图中找出进一步节能的途径。热效率则是被加热物吸收的热量与向炉内提供热量的比值。并用比值的大小评价冶金炉热工作的优劣,希望达到尽可能大的比值。
热损失项目繁多,主要为炉气和冷却水带走的热,炉墙的积热和散热。炉气带走的热最多,而且在热支出的总量中占的份额差别也很大,一般为20~50%;冷却水带走的热也大,如加热炉冷却滑轨的水带走的热量可达全部热损失的15~30%,采用汽化冷却和绝热包扎后可降到6%左右;其他如炉墙积热和散热,炉门溢气和辐射,不完全燃烧等热损失在正常情况下约占热总收入的10~20%。某些间歇式的热处理炉炉墙积热和散热以及料架吸热有时高达热总收入的40%。近年来采取减少热损失的措施有:回收炉气带走的热,对炉内冷却件实行绝热,使炉墙轻型化和加大炉墙的热阻,采用加热新工艺,通过这些可使某些加热炉的热效率达60%以上。目前正设法利用产品所吸收的热以进一步降低总的能耗。根据不同类型和不同效率范围的200座加热炉和150座热处理炉的测定数据所做的研究分析,得出综合热平衡情况见图。从图中可以看出,提高待加工品的热焓,充分利用废气和冷却水的余热,进一步减少炉墙和辐射热损失以及设法利用产品带走的热,将是冶金炉节能的主要途径。
加热炉和热处理炉的热效率一般为15~65%;化铁炉为25~45%;高炉为75~85%;平炉为20~30%。
热损失项目繁多,主要为炉气和冷却水带走的热,炉墙的积热和散热。炉气带走的热最多,而且在热支出的总量中占的份额差别也很大,一般为20~50%;冷却水带走的热也大,如加热炉冷却滑轨的水带走的热量可达全部热损失的15~30%,采用汽化冷却和绝热包扎后可降到6%左右;其他如炉墙积热和散热,炉门溢气和辐射,不完全燃烧等热损失在正常情况下约占热总收入的10~20%。某些间歇式的热处理炉炉墙积热和散热以及料架吸热有时高达热总收入的40%。近年来采取减少热损失的措施有:回收炉气带走的热,对炉内冷却件实行绝热,使炉墙轻型化和加大炉墙的热阻,采用加热新工艺,通过这些可使某些加热炉的热效率达60%以上。目前正设法利用产品所吸收的热以进一步降低总的能耗。根据不同类型和不同效率范围的200座加热炉和150座热处理炉的测定数据所做的研究分析,得出综合热平衡情况见图。从图中可以看出,提高待加工品的热焓,充分利用废气和冷却水的余热,进一步减少炉墙和辐射热损失以及设法利用产品带走的热,将是冶金炉节能的主要途径。
加热炉和热处理炉的热效率一般为15~65%;化铁炉为25~45%;高炉为75~85%;平炉为20~30%。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条